For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

## **Electronics**

## Question paper 2

| Level      | International A Level |
|------------|-----------------------|
| Subject    | Physics               |
| Exam Board | CIE                   |
| Topic      | Electronics           |
| Sub Topic  |                       |
| Paper Type | Theory                |
| Booklet    | Question paper 2      |

Time Allowed: 71 minutes

Score: /59

Percentage: /100

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 1 An operational amplifier (op-amp) may be used as part of the processing unit in an electronic sensor.
  - (a) State three properties of an ideal op-amp.

| 1 |     |
|---|-----|
| 2 |     |
| 3 |     |
| • | [3] |

(b) A comparator circuit incorporating an ideal op-amp is shown in Fig. 9.1.



Fig. 9.1

(i) In one application of the comparator,  $V_2$  is kept constant at +1.5 V. The variation with time t of the potential  $V_1$  is shown in Fig. 9.2. The potential  $V_2$  is also shown.



Fig. 9.2

On Fig. 9.2, show the variation with time t of the output potential  $V_{OUT}$ . [4]

(ii) Two light-emitting diodes (LEDs) R and G are connected to the output of the op-amp in Fig. 9.1 such that R emits light for a longer time than G.

On Fig. 9.1, draw the symbols for the two diodes connected to the output of the op-amp and label the diodes R and G. [3]

2 A student designs an electronic sensor to monitor whether the temperature in a refrigerator is above or below a particular value. The circuit is shown in Fig. 9.1.



Fig. 9.1

| (a) | Name the components used in the output device. |                                                                                                              |  |  |
|-----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
|     |                                                | [1                                                                                                           |  |  |
| (b) |                                                | operational amplifier (op-amp) is used as the processing unit. Describe the function<br>nis processing unit. |  |  |
|     |                                                |                                                                                                              |  |  |
|     |                                                | [2                                                                                                           |  |  |
| (c) | Sta                                            | te the function of                                                                                           |  |  |
|     | (i)                                            | the resistors C and D,                                                                                       |  |  |
|     |                                                |                                                                                                              |  |  |
|     |                                                | [1                                                                                                           |  |  |
|     | (ii)                                           | the resistor B.                                                                                              |  |  |
|     |                                                |                                                                                                              |  |  |

(i) State the component that is used in the new output device.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**(d)** The output device of the circuit in Fig. 9.1 is changed so that the new output device may be used to switch on a high-voltage circuit.

|  | <br> | <br> |
|--|------|------|
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |
|  |      |      |

.....[1]

(ii) Draw on Fig. 9.2 to show how the component in (i), together with a diode, are connected so that the high voltage may be switched on when the output of the op-amp is negative.



Fig. 9.2

[2]

**3** A student designs an electronic sensor that is to be used to switch on a lamp when the light intensity is low. Part of the circuit is shown in Fig. 10.1.



Fig. 10.1

| (a) | Sta  | te the name of the component labelled X on Fig. 10.1.                                                      |      |
|-----|------|------------------------------------------------------------------------------------------------------------|------|
|     |      |                                                                                                            | [1]  |
| (b) | On   | Fig. 10.1, draw the symbols for                                                                            |      |
|     | (i)  | two resistors to complete the circuit for the sensing device,                                              | [2]  |
|     | (ii) | a relay to complete the circuit for the processing unit.                                                   | [2]  |
| (c) | (i)  | State the purpose of the relay.                                                                            |      |
|     |      |                                                                                                            |      |
|     |      |                                                                                                            | [1]  |
|     | (ii) | Suggest why the diode is connected to the output of the operational ampli (op-amp) in the direction shown. | fier |
|     |      |                                                                                                            |      |
|     |      |                                                                                                            |      |
|     |      |                                                                                                            | [2]  |

- 4 An operational amplifier (op-amp) may be used as part of the processing unit in an electronic sensor.
  - (a) State four properties of an ideal operational amplifier.

| 1. |     |
|----|-----|
| 2. |     |
|    |     |
| პ. |     |
| 4. |     |
|    | [4] |

(b) A comparator circuit incorporating an ideal op-amp is shown in Fig. 9.1.



Fig. 9.1

The variation with time t of the input potential  $V_{\rm IN}$  is shown in Fig. 9.2.



Fig. 9.2

On the axes of Fig. 9.2, draw a graph to show the variation with time t of the output potential  $V_{\rm OUT}$ . [3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The output potential  $V_{\rm OUT}$  is to be displayed using two light-emitting diodes (LEDs). A diode emitting red light is to indicate when  $V_{\rm OUT}$  is positive and a diode emitting green light is to be used to indicate when  $V_{\rm OUT}$  is negative.

Complete Fig. 9.3 to show the connections of the two LEDs to the output of the op-amp. Label each LED with the colour of light that it emits.



Fig. 9.3

[3]

| 5 | (a) | State two effects of negative feedback on the gain of an amplifier incorporating an |
|---|-----|-------------------------------------------------------------------------------------|
|   |     | pperational amplifier (op-amp).                                                     |

| 1 |     |
|---|-----|
|   |     |
|   |     |
|   |     |
| 2 |     |
|   |     |
|   |     |
|   | [2] |

**(b)** An incomplete circuit diagram of a non-inverting amplifier using an ideal op-amp is shown in Fig. 9.1.



- (i) Complete the circuit diagram of Fig. 9.1. Label the input and the output. [2]
- (ii) Calculate the resistance of resistor R so that the non-inverting amplifier has a voltage gain of 15.

(c) On Fig. 9.2, draw a graph to show the variation with input potential  $V_{\mathrm{IN}}$  of the output potential  $V_{\rm OUT}$ . You should consider input potentials in the range 0 to +1.0 V.



Fig. 9.2

[2]

(d) The output of the amplifier circuit of Fig. 9.1 may be connected to a relay. State and explain one purpose of a relay.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

| 6 | (a) | An operational amplifier (op-amp) may be used as a comparator.  State the function of a comparator. |    |
|---|-----|-----------------------------------------------------------------------------------------------------|----|
|   |     |                                                                                                     |    |
|   |     |                                                                                                     | [2 |

**(b)** The variation with temperature  $\theta$  of the resistance R of a thermistor is shown in Fig. 9.1.



Fig. 9.1

The thermistor is connected into the circuit of Fig. 9.2.



Fig. 9.2

The op-amp may be considered to be ideal.

(i) The temperature of the thermistor is  $10\,^{\circ}$ C. Determine the resistance of the variable resistor X such that the output potential  $V_{\rm OUT}$  is zero.

resistance = ..... 
$$\Omega$$
 [2]

| (ii) | The resistance of the resistor X is now held constant at the value calculated in (i). Describe the change in the output potential $V_{\rm OUT}$ as the temperature of the thermistor is changed from 5 °C to 20 °C. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
|      | [4]                                                                                                                                                                                                                 |

7 An amplifier circuit incorporating an operational amplifier (op-amp) is shown in Fig. 9.1.



Fig. 9.1

- (a) State
  - (i) the name of this type of amplifier circuit,

.....[1]

(ii) the gain G in terms of resistances  $R_1$  and  $R_2$ .

.....[1]

# **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| (b) The value of R <sub>1</sub> is 820 Ω. The resistor of resistance R <sub>2</sub> is replaced with a light-deperent resistor (LDR). The input potential difference V <sub>IN</sub> is 15 mV. Calculate the output potential difference V <sub>OUT</sub> for the LDR having a resistance of |      |                                          | -                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                              | (i)  | 100 $\Omega$ (the LDR is in sunlight),   |                         |
|                                                                                                                                                                                                                                                                                              | (ii) | 1.0 M $\Omega$ (the LDR is in darkness). | V <sub>OUT</sub> = V [2 |
|                                                                                                                                                                                                                                                                                              |      |                                          | V <sub>OUT</sub> = V [1 |