Nitrogen Compounds

Question Paper 5

Level	International A Level				
Subject	Chemistry				
Exam Board	CIE				
Topic	Nitrogen Compounds				
Sub-Topic					
Paper Type	Theory				
Booklet	Question Paper 5				

Time Allowed: 71 minutes

Score: /59

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 *Kevlar* is a tough polyamide used in bullet-proof vests and high-specification bicycle tyres. It can be manufactured by the following process.

$$H_{3}C - \bigcirc - CH_{3} \xrightarrow{I} HO_{2}C - \bigcirc - CO_{2}H \xrightarrow{II} C !OC - \bigcirc - COC_{1} H_{2}N - \bigcirc - NH_{2}$$

$$C \qquad D$$

$$Kevlar$$

(a) (i) Suggest reagents and conditions for

reaction I,

reaction II.

(ii) Draw the structural formula of **one** repeat unit of *Kevlar* in the box above.

[4]

- **(b)** The di-acid chloride **C** reacts with a variety of reagents. Suggest the structural formulae of the products of the reaction of **C** with
 - (i) CH₃NH₂,
 - (ii) HOCH₂CH₂OH.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (c) The diamine **D** also reacts with a variety of reagents. Suggest the structural formulae of the products of the reaction of **D** with
 - (i) HCl(aq),
 - (ii) $Br_2(aq)$.

[3]

(d) 4-aminobenzoic acid, E, is a useful intermediate for making dyes.

$$HO_2C$$
 \longrightarrow NH_2 \longrightarrow HO_2C \longrightarrow $N=N$ \longrightarrow $N=N$ \longrightarrow $N=N$ \longrightarrow OH a dye

Suggest reagents and conditions for

reaction IV. [4]

- (e) 4-aminobenzoic acid, E, forms a zwitterion.
 - (i) What is meant by the term zwitterion?

(ii) Draw the structural formula of the zwitterion formed from 4-aminobenzoic acid.

)	Explain, using diagrams where appropriate, the types of interaction responsible for the primary, secondary and tertiary structure of a protein.
	primary structure
	secondary structure
	tertiary structure
	[6]

(b)	Enzymes are particular types of protein molecule. Explain briefly how enzymes are able to help to break down molecules in the body.
	[2]
(c)	The graph below shows the effect of inhibition on an enzyme-catalysed reaction.
	reaction rate <i>V</i>
	V _{max}
	substrate concentration [S]
	State the type of inhibition shown, giving a reason to support your answer.
	type of inhibition
	reason
	[2]

[Total: 10]

(a)	Explain briefly what is meant by the word <i>protein</i> .
	[1]
(b)	Describe how peptide bonds are formed between amino acids during the formation of a tripeptide. Include diagrams and displayed formulae in your answer.
	[3]
(c)	Describe how proteins can be broken down into amino acids in the laboratory without the aid of enzymes.
	[2]
(d)	When a small polypeptide S was broken down in this way, three different amino acids were produced according to the following reaction.
S	3 NH ₂ CH ₂ CO ₂ H + 2 NH ₂ CHCO ₂ H + 2 NH ₂ CHCO ₂ H CH ₃ CH ₂
	$M_{\rm r} = 75$ $M_{\rm r} = 89$
	$M_{\rm r} = 165$
	(i) How many peptide bonds were broken during this reaction?
	(ii) Calculate the $M_{\rm r}$ of the polypeptide S .
	$M_{\rm r} = \dots$ [3]

[Total: 9]

4(a)	Ele		-		an be polype		to sep	oarate	amino	acids	which	are	prod	uced	l by th	ne
		Usir	ng gly	cine a	ıs an e	xample	e, expl	ain wh	y the re	sult of	electro	opho	resis	depe	nds or	n pH.
							•••••	•••••							[3]	
	(b)	of the	ne exp	erime ed in	ent a sp the mi	oot of a	a soluti f the p	ion cor plate. F	electroph ntaining Following er diagra	a mixt	ure of	amin	o acid	ls P ,	Q, R a	and S
		befo	ore	+					•						_	
		afte	r	+	•				•				•		_	
					P				Q		F	3	S			
		(i)			ino acio		ed ma	inly as	a zwitte	erion ir	the b	uffer	soluti	on?		
		(ii)		_					y the sa cule? Ex		•			s buf	fer sol	ution,
																[2]
	(c)	This pap thro	s invol er an	ves p d allo 0° an	utting a wing a d place	a spot solve	of the	mixtu soak ເ	using to re on th up the p ent. This	e corn paper.	er of a	a pie aper	ce of is the	chroi en di	matog ried, tu	raphy urned
		(i)	Pape phas		omatog	graphy	relies	on par	rtition be	etweer	the s	olver	nt app	lied a	and an	other
			What	t is th	is seco	nd pha	ase?									

(ii) The table below shows the $R_{\rm f}$ values for some amino acids in two different solvents.

amino acid	R _f solvent 1	R _f solvent 2
Α	0.1	0.2
В	0.0	0.4
С	0.3	0.0
D	0.8	0.9
E	0.6	0.5

Use the grid below to plot the positions of the amino acids after two-dimensional paper chromatography using solvent 1 followed by solvent 2.

- (iii) Which amino acid travelled fastest in both solvents?
- (iv) Which amino acid did not move at all in solvent 2?

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 The amino acids tyrosine, lysine and glycine are constituents of many proteins.

(c)	In aqueous solution amino acids exist as zwitterions.	Draw the zwitterionic structure of
	glycine.	

[1]

(b) Draw a ring around each chiral centre in the above molecules.

		[1]
(d)	For	each of the following reactions, draw the structure of the organic compound formed.
	(i)	glycine + excess NaOH(aq)
	<i>(</i> ''')	AL OUT A
	(ii)	tyrosine + excess NaOH(aq)

	(iii)	lysine + excess HCl (aq)
	(iv)	tyrosine + excess Br ₂ (aq)
		[5]
(e)		w the structural formula of a tripeptide formed from all three of these amino acids, wing clearly the peptide bonds.
		[2]
(f)	The	formula of part of the chain of a synthetic polyamide is shown below.
		CO NH CH ₂ CH ₂ NH CO CO NH CH ₂ CH ₂ NH
	(i)	Identify the repeat unit of the polymer by drawing square brackets around it on the above formula.
	(ii)	Draw the structures of the two monomers from which the polymer could be made.
		[3]

[Total: 14]