For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Transformations & Transmission of Electrical Energy

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Alternating Currents
Sub Topic	Transformers & Transmission of Electrical Energy
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 51 minutes

Score: /42

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

A student is asked to design a circuit by which a direct voltage of peak value 9.0V is obtained from a 240V alternating supply.

The student uses a transformer that may be considered to be ideal and a bridge rectifier incorporating four ideal diodes.

The partially completed circuit diagram is shown in Fig. 6.1.

Fig. 6.1

- (a) On Fig. 6.1, draw symbols for the four diodes so as to produce the polarity across the load as shown on the diagram. [2]
- (b) Calculate the ratio

number of turns on the secondary coil number of turns on the primary coil

2 An ideal iron-cored transformer is illustrated in Fig. 6.1.

Fig. 6.1

(a)	Fxn	lain	whv

(i)	the supply to the primary coil must be alternating current, not direct current,
	[2]
(ii)	for constant input power, the output current must decrease if the output voltage increases.
	[2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) Fig. 6.2 shows the variation with time t of the current I_p in the primary coil. There is no current in the secondary coil.

Fig. 6.2

Fig. 6.3

Fig. 6.4

- (i) Complete Fig. 6.3 to show the variation with time t of the magnetic flux Φ in the core. [1]
- (ii) Complete Fig. 6.4 to show the variation with time *t* of the e.m.f. *E* induced in the secondary coil. [2]
- (iii) Hence state the phase difference between the current I_p in the primary coil and the e.m.f. E induced in the secondary coil.

3 (a) The mean value of an alternating current is zero.
Explain

(i)	why an alternating current gives rise to a heating effect in a resistor,
(ii)	by reference to heating effect, what is meant by the root-mean-square (r.m.s.) value of
(,	an alternating current.
	[2]
	[-]

(b) A simple iron-cored transformer is illustrated in Fig. 7.1.

Fig. 7.1

ate Faraday's law of electromagnetic induction.	
	[2
	[4.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	Use Faraday's law to explain why the current in the primary coil is not in phase with the e.m.f. induced in the secondary coil.
	[3]
	[7]

An ideal transformer is illustrated in Fig. 6.1. 4

Fig. 6.1

(a) (ı)	State Faraday's law of electromagnetic induction.
	[2]
(ii)	Use the law to explain why a transformer will not operate using a direct current input.
	[2]
(b) (i)	State Lenz's law.
	[2]
(ii)	Use Lenz's law to explain why the input potential difference and the output e.m.f. are not in phase.
	[2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	Electrical energy is usually transmitted using alternating high voltages.			
	Sug	gest one advantage, for the transmission of electrical energy, of using		
	(i)	alternating voltage,		
			[1]	
	(ii)	high voltage.		
			[1]	

5 A simple iron-cored transformer is illustrated in Fig. 6.1.

Fig. 6.1

(a)	Sug	gest why the core is
	(i)	a continuous loop,
		[1]
	(ii)	laminated.
		[2]
(b)	(i)	State Faraday's law of electromagnetic induction.
		[2]
	(ii)	Use Faraday's law to explain the operation of the transformer.
		101

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	State two advantages of the use of alternating voltages for the transmission and use of electrical energy.
	1
	2
	[2]