Diagrams Question Paper 7

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Representation of data
Sub Topic	Diagrams
Booklet	Question Paper 7

Time Allowed:	68 minutes
Score:	$/ 56$
Percentage:	$/ 100$

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

1 A hotel has 90 rooms. The table summarises information about the number of rooms occupied each day for a period of 200 days.

Number of rooms occupied	$1-20$	$21-40$	$41-50$	$51-60$	$61-70$	$71-90$
Frequency	10	32	62	50	28	18

(i) Draw a cumulative frequency graph on graph paper to illustrate this information.
(ii) Estimate the number of days when over 30 rooms were occupied.
(iii) On 75% of the days at most n rooms were occupied. Estimate the value of n.

The following cumulative frequency table shows the examination marks for 300 candidates in country A and 300 candidates in country B.

Mark	<10	<20	<35	<50	<70	<100
Cumulative frequency, A	25	68	159	234	260	300
Cumulative frequency, B	10	46	72	144	198	300

(i) Without drawing a graph, show that the median for country B is higher than the median for country A.
(ii) Find the number of candidates in country A who scored between 20 and 34 marks inclusive. [1]
(iii) Calculate an estimate of the mean mark for candidates in country A.

3 The numbers of people travelling on a certain bus at different times of the day are as follows.

17	5	2	23	16	31	8
22	14	25	35	17	27	12
6	23	19	21	23	8	26

(i) Draw a stem-and-leaf diagram to illustrate the information given above.
(ii) Find the median, the lower quartile, the upper quartile and the interquartile range.
(iii) State, in this case, which of the median and mode is preferable as a measure of central tendency, and why.

4 Cumulative

The birth weights of random samples of 900 babies born in country A and 900 babies born in country B are illustrated in the cumulative frequency graphs. Use suitable data from these graphs to compare the central tendency and spread of the birth weights of the two sets of babies.

5 The lengths of some insects of the same type from two countries, X and Y, were measured. The stem-and-leaf diagram shows the results.

	Country X		Country Y	
(10)	9766644432	80		
(18)	888776655544333220	81	1122333556789	(13)
(16)	9998877655322100	82	$0012333 q 4566788$	(15)
(16)	8765553322211100	83	01224444556677789	(17)
(11)	87655443311	84	001244556677789	(15)
		85	$12 r 335566788$	(12)
		86	01223555899	(11)

Key: $5|81| 3$ means an insect from country X has length 0.815 cm and an insect from country Y has length 0.813 cm .
(i) Find the median and interquartile range of the lengths of the insects from country X.
(ii) The interquartile range of the lengths of the insects from country Y is 0.028 cm . Find the values of q and r.
(iii) Represent the data by means of a pair of box-and-whisker plots in a single diagram on graph paper.
(iv) Compare the lengths of the insects from the two countries.

6 During January the numbers of people entering a store during the frst hour after opening were as follows.

Time after opening, x minutes	Frequency	Cumulative frequency
$0<x \leqslant 10$	210	210
$10<x \leqslant 20$	134	344
$20<x \leqslant 30$	78	422
$30<x \leqslant 40$	72	a
$40<x \leqslant 60$	b	540

(i) Find the values of a and b.
(ii) Draw a cumulative frequency graph to represent this information. Take a scale of 2 cm for 10 minutes on the horizontal axis and 2 cm for 50 people on the vertical axis.
(iii) Use your graph to estimate the median time after opening that people entered the store.
(iv) Calculate estimates of the mean, m minutes, and standard deviation, s minutes, of the time after opening that people entered the store.
(v) Use your graph to estimate the number of people entering the store between ($m-\frac{1}{2} s$) and ($m+\frac{1}{2} s$) minutes after opening.

7 The stem-and-leaf diagram below represents data collected for the number of hits on an internet site on each day in March 2007. There is one missing value, denoted by x.

0	0	1		6						
1	1	3		6	6	8				
2	1	1		3	4	4	4	8	9	
3	1	2		2	x	8	9			
4	2	5		7	9					

Key: $1 \mid 5$ represents 15 hits
(i) Find the median and lower quartile for the number of hits each day.
(ii) The interquartile range is 19 . Find the value of x.

