For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Rectification

Question paper

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Alternating Currents
Sub Topic	Rectification
Paper Type	Theory
Booklet	Question paper

Time Allowed: 90 minutes

Score: /75

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1	(a) S	tate Faraday	's law of electrom	agnetic indu	ction.		
(b)	The ou	tput of an ide	eal transformer is c			ier, as shown ir	
240 V r.m.	s.~)						load resistor
			Fi	g. 6.1			

The input to the transformer is $240\,\mathrm{V}\,\mathrm{r.m.s.}$ and the **maximum** potential difference across the load resistor is $9.0\,\mathrm{V.}$

- (i) On Fig. 6.1, mark with the letter P the positive output from the rectifier. [1]
- (ii) Calculate the ratio

number of turns on primary coil number of turns on secondary coil.

(c) The variation with time t of the potential difference V across the load resistor in (b) is shown in Fig. 6.2.

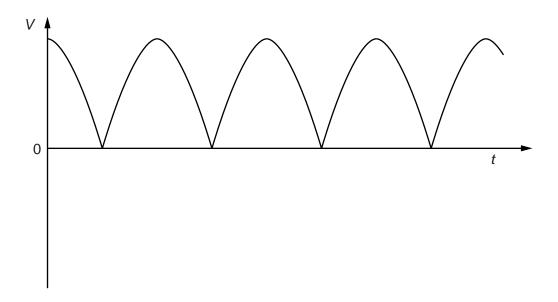


Fig. 6.2

A capacitor is now connected in parallel with the load resistor to produce some smoothing.

(i)	Explain what is meant by <i>smoothing</i> .							
	[1]							

(ii) On Fig. 6.2, draw the variation with time *t* of the smoothed output potential difference. [2]

2 A bridge rectifier consists of four ideal diodes A, B, C and D, connected as shown in Fig. 6.1.

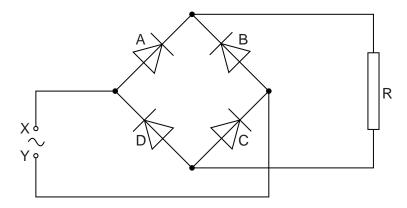


Fig. 6.1

An alternating supply is applied between the terminals X and Y.

- (a) (i) On Fig. 6.1, label the positive (+) connection to the load resistor R. [1]
 - (ii) State which diodes are conducting when terminal Y of the supply is positive.

(b) The variation with time t of the potential difference V across the load resistor R is shown in Fig. 6.2.

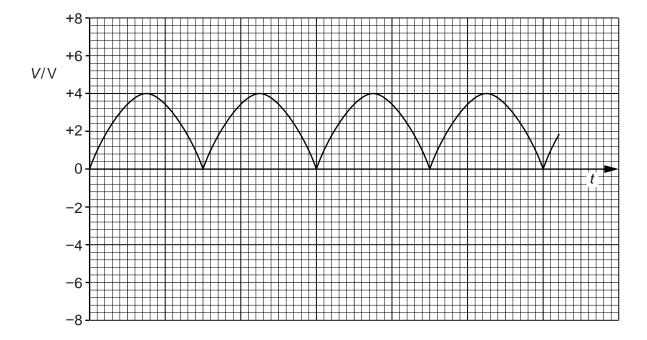


Fig. 6.2

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Tha	امما	rociotor	D	hoo	resistance	27000	`
rne	ioau	resistor	ĸ	nas	resistance	Z/UU\$	۷.

(i) Use Fig. 6.2 to determine the mean power dissipated in the resistor R.

power = W [3]

- (ii) On Fig. 6.1, draw the symbol for a capacitor, connected so as to increase the mean power dissipated in the resistor R. [1]
- (c) The capacitor in (b)(ii) is now removed from the circuit.

 The diode A in Fig. 6.1 stops functioning, so that it now has infinite resistance.

On Fig. 6.2, draw the variation with time t of the new potential difference across the resistor R. [2]

3 A sinusoidal alternating voltage supply is connected to a bridge rectifier consisting of four ideal diodes. The output of the rectifier is connected to a resistor R and a capacitor C as shown in Fig. 6.1.

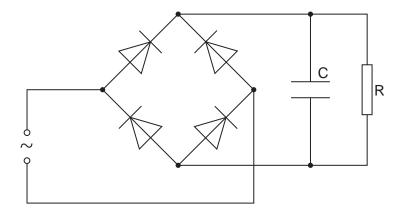


Fig. 6.1

The function of C is to provide some smoothing to the potential difference across R. The variation with time *t* of the potential difference V across the resistor R is shown in Fig. 6.2.

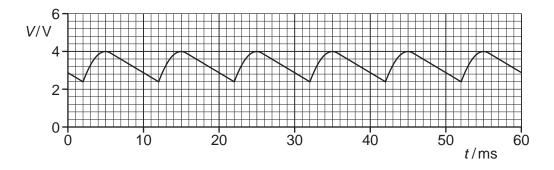


Fig. 6.2

- (a) Use Fig. 6.2 to determine, for the alternating supply,
 - (i) the peak voltage,

(ii) the root-mean-square (r.m.s.) voltage,

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(iii)	the frequency. Show your working.		
		fre	equency = Hz	[2]
(b)		e capacitor C has capacitance 5.0 μF. a single discharge of the capacitor thro	ough the resistor R, use Fig. 6.2 to	
	(i)	determine the change in potential diffe	erence,	
			ah an an	- F41
	(**)		change =V	[1]
	(ii)	determine the change in charge on ea	ach plate of the capacitor,	
			chango –	[0]
	/:::\		change = C	[4]
	(iii)	show that the average current in the re	esisioi is 1.1 x 10 °A.	

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(c)	Use Fig. 6.2 resistor R.	and the	value of	the current	given in	(b)(iii) 1	o estimate	the resistance	e of
				re	sistance	=		Ω	[2]

4 The components for a bridge rectifier are shown in Fig. 5.1.

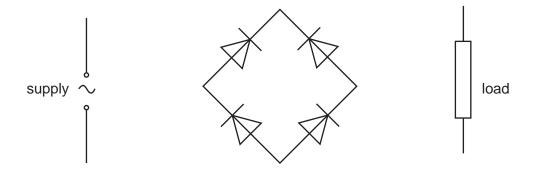


Fig. 5.1

(a)		nplete the circuit of Fig. 5.1 by showing the connections of the supply and of the load ne diodes.
(b)		gest one advantage of the use of a bridge rectifier, rather than a single diode, for the ification of alternating current.
		[1]
(c)	Stat	te
	(i)	what is meant by <i>smoothing</i> ,
		[1]
	(ii)	the effect of the value of the capacitance of the smoothing capacitor in relation to smoothing.

5 A sinusoidal alternating voltage is to be rectified.

a)	rectification	on.	J		rectification	·	
							14

(b) The rectification is produced using the circuit of Fig. 7.1.

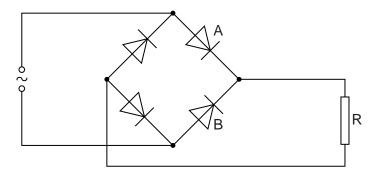


Fig. 7.1

All the diodes may be considered to be ideal.

The variation with time t of the alternating voltage applied to the circuit is shown in Fig. 7.2 and in Fig. 7.3.

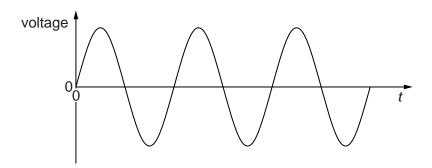


Fig. 7.2

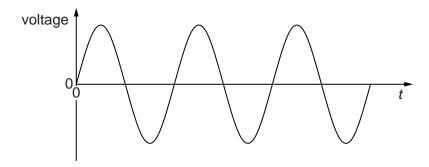


Fig. 7.3

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (i) On the axes of Fig. 7.2, draw a graph to show the variation with time *t* of the potential difference across diode A. [1]
- (ii) On the axes of Fig. 7.3, draw a graph to show the variation with time *t* of the potential difference across diode B. [1]
- (c) (i) On Fig. 7.1, draw the symbol for a capacitor, connected into the circuit so as to provide smoothing. [1]
 - (ii) Fig. 7.4 shows the variation with time *t* of the smoothed potential difference across the resistor R in Fig. 7.1.

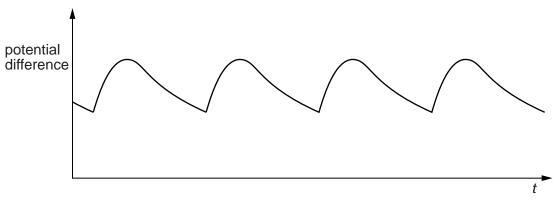


Fig. 7.4

 State how the amount of smoothing may be increased. 							
	••••						
	[1]						

2. On Fig. 7.4, draw the variation with time *t* of the potential difference across resistor R for increased smoothing. [2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- An ideal transformer has 5000 turns on its primary coil. It is to be used to convert a mains supply of 230 V r.m.s. to an alternating voltage having a peak value of 9.0 V.
 - (a) Calculate the number of turns on the secondary coil.

number	=	 [3]
IUIIIDEI	_	 101

(b) The output from the transformer is to be full-wave rectified. Fig. 4.1 shows part of the rectifier circuit.

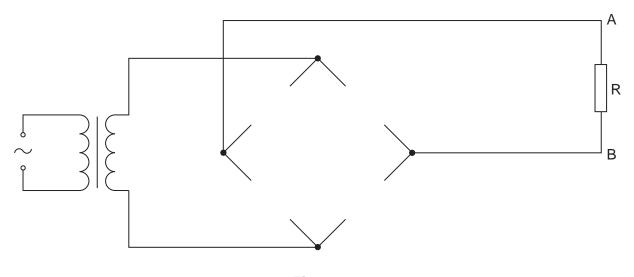


Fig. 4.1

On Fig. 4.1, draw

- (i) diode symbols to complete the diagram of the rectifier such that terminal A of the resistor R is positive with respect to terminal B, [2]
- (ii) the symbol for a capacitor connected to provide smoothing of the potential difference across the resistor R. [1]

(c) Fig. 4.2 shows the variation with time *t* of the smoothed potential difference *V* across the resistor R.

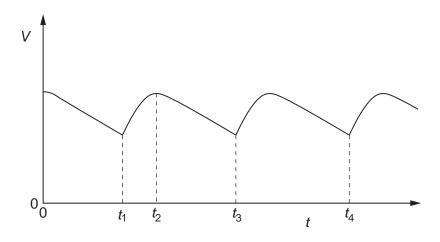


Fig. 4.2

(i) State the interval of time during which the capacitor is being charged from the transformer.

from time	 to time	 [1	1

(ii) The resistance of the resistor R is doubled. On Fig. 4.2, sketch the variation with time *t* of the potential difference *V* across the resistor. [2]

7 The rectified output of a sinusoidal signal generator is connected across a resistor R of resistance 1.5 k, as shown in Fig. 4.1.

Fig. 4.1

The variation with time t of the potential difference V across \mathbf{R} is shown in Fig. 4.2.

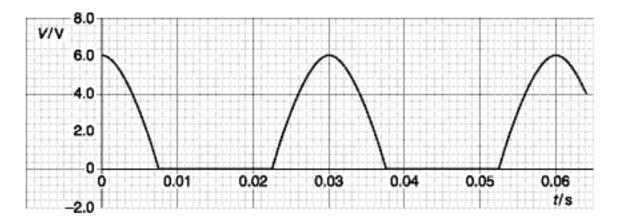


Fig. 4.2

(a)	State how the rectification shown in Fig. 4.2 may be achieved.				
	[2]				

(b) A capacitor is now connected in parallel with the resistor **R**. The resulting variation with time *t* of the potential difference *V* across **R** is shown in Fig. 4.3.

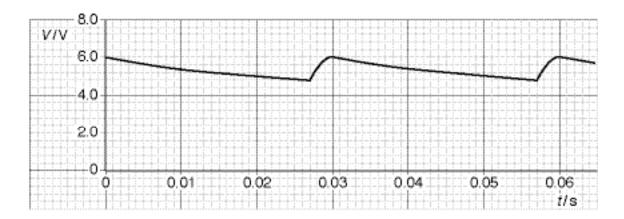


Fig. 4.3

- (i) Using Fig. 4.3, determine
 - 1. the mean potential difference across the resistor **R**,

2. the mean current in the resistor,

3. the time in each cycle during which the capacitor discharges through the resistor.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(11)	Using your answers in (i), calculate			
		1.	the charge passing through the resistor during one discharge of the capacitor,		
		2.	charge =		
			capacitance = F [4]		
(c)	cap	acito	and capacitor is now connected in parallel with the resistor ${\bf R}$ and the first or. On Fig. 4.3, draw a line to show the variation with time t of the potential ce V across the resistor.		

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

A student is asked to design a circuit by which a direct voltage of peak value 9.0V is obtained from a 240V alternating supply.

The student uses a transformer that may be considered to be ideal and a bridge rectifier incorporating four ideal diodes.

The partially completed circuit diagram is shown in Fig. 6.1.

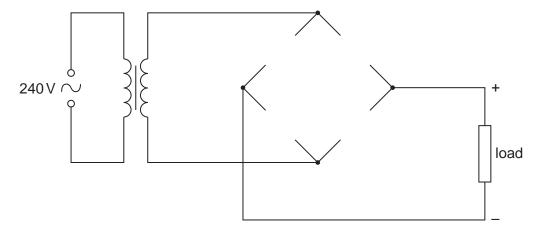


Fig. 6.1

- (a) On Fig. 6.1, draw symbols for the four diodes so as to produce the polarity across the load as shown on the diagram. [2]
- (b) Calculate the ratio

number of turns on the secondary coil number of turns on the primary coil

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

9 An alternating supply of frequency 50 Hz and having an output of 6.0 V r.m.s. is to be rectified so as to provide direct current for a resistor R. The circuit of Fig. 6.1 is used.

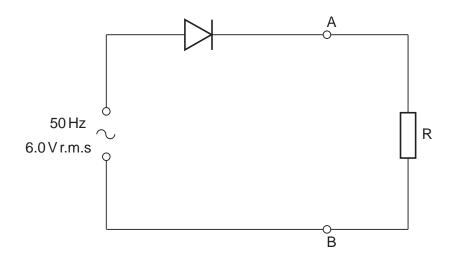


Fig. 6.1

The diode is ideal. The Y-plates of a cathode-ray oscilloscope (c.r.o.) are connected between points A and B.

(a) (i) Calculate the maximum potential difference across the diode during one cycle.

.....[1]

(b) The Y-plate sensitivity of the c.r.o. is set at 2.0 V cm⁻¹ and the time-base at 5.0 ms cm⁻¹.

On Fig. 6.2, draw the waveform that is seen on the screen of the c.r.o.

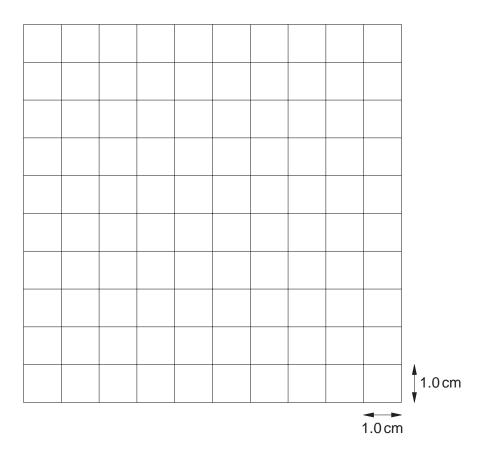


Fig. 6.2

- (c) A capacitor of capacitance $180\,\mu\text{F}$ is connected into the circuit to provide smoothing of the potential difference across the resistor R.
 - (i) On Fig. 6.1, show the position of the capacitor in the circuit. [1]
 - (ii) Calculate the energy stored in the fully-charged capacitor.

[3]