Organic Synthesis # **Question Paper 2** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Organic Synthesis | | Sub-Topic | | | Paper Type | Theory | | Booklet | Question Paper 2 | Time Allowed: 72 minutes Score: /60 Percentage: /100 ### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 1 Indigo is the dye used in blue jeans. Although originally extracted from plants of the type *indigofera*, it is now almost entirely made artificially. Indigo is insoluble in water but this disadvantage can be overcome by converting it into the water-soluble colourless leuco-indigo. If cloth soaked in a solution of leuco-indigo is left to dry in the air, the leuco-indigo is converted into the insoluble blue indigo, which is precipitated out onto the fibres of the cloth. | (a) | Give the molecular formula of indigo. | | |------|--|---------| | | | | | (ii) | Name three functional groups in indigo. | | | | |
[3] | | (b) | What type of reaction is the conversion of indigo into leuco-indigo? | | | (ii) | Suggest a laboratory reagent for this reaction. | | | | |
[2] | **(c)** Suggest **two** chemical tests that could be used to distinguish between indigo and leuco-indigo. Write your answers in the following table. | test | reagents and conditions | observation with indigo | observation with leuco-indigo | |------|-------------------------|-------------------------|-------------------------------| | 1 | | | | | 2 | | | | ### **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (d) | | en indigo is heated with hydrogen and a nickel catalyst, compound ${\bf A}$, ${\bf C}_{16}{\bf H}_{28}{\bf N}_2{\bf O}_2$, is ned. | |-----|------|---| | | (i) | Suggest a structure for A. | | | (ii) | Calculate the volume of hydrogen, measured at room temperature and pressure, that would have been absorbed if 2.50 g of indigo had undergone this reaction. | | | | volume =dm ³
[3] | | (e) | Suç | ggest the structure of the product formed when indigo reacts with an excess of $\mathrm{Br}_2(\mathrm{aq})$. | | | | [3] | | | | [Total: 16] | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 2 Lawsone is the dye that is extracted from the henna plant, *Lawsonia inermis*. Although its natural colour is yellow, lawsone reacts with the proteins in hair and skin to produce the characteristic brown henna colour. Lawsone can readily be reduced to 1,2,4-trihydroxynaphthalene, compound A. OH OH $$+ 2^+ + 2e^- \implies$$ OH OH $E^{\circ} = +0.36 \text{ V}$ lawsone Br₂(aq). (a) 1,2,4-trihydroxynaphthalene, A | | Name three functional groups in lawsone. | |-------|--| | | | | | | | (ii) | Describe a reaction (reagent with conditions) that you could use to distinguish lawsone from compound A . Describe the observations you would make with both compounds. | | | | | | | | | | | | | | (iii) | Suggest a reagent that could be used to convert lawsone into compound A in the laboratory. | | | | | | | | (iv) | Draw the structural formula of the compound formed when lawsone is reacted with | ## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (b) | Cor | Compound A can be oxidised to lawsone by acidified K ₂ Cr ₂ O ₇ . | | | | | |-----|-------|--|--|--|--|--| | | (i) | Use the $\it Data Booklet to calculate the E^{\rm e}_{\rm cell} for this reaction.$ | | | | | | | (ii) | Construct an equation for this reaction. Use the molecular formulae of lawsone, $C_{10}H_6O_3$, and compound $\bf A$, $C_{10}H_8O_3$, in your equation. | | | | | | | (iii) | | | | | | | | | [A] = mo dm ⁻³
[5] | | | | | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ (c) When lawsone is reacted with NaOH(aq), compound **B** is produced. Reacting **B** with ethanoyl chloride, CH_3COC_l , produces compound **C**, with the molecular formula $C_{12}H_8O_4$. (i) Suggest the identity of compound C, and draw its structure in the box above. Another compound, **D**, in addition to **C**, is produced in the above reaction. **D** is an isomer of **C** which contains the same functional groups as **C**, but in different positions. (ii) Suggest a possible structure for D. (iii) Suggest a mechanism for the formation of **D** from **B** and ethanoyl chloride by drawing relevant structures and curly arrows in the following scheme. [3] For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ - Many organic compounds, including alcohols, carbonyl compounds, carboxylic acids and esters, contain oxygen. - **(a)** The table below lists some oxygen-containing organic compounds and some common laboratory reagents. - (i) Complete the table as fully as you can. If you think no reaction occurs, write 'no reaction' in the box for the structural formula(e). | reaction | organic
compound | reagent | structural formula(e) of organic product(s) | |----------|---|---|---| | A | CH₃CH(OH)CH₃ | NaBH ₄ | | | В | CH ₃ COCH ₃ | Tollens' reagent warm | | | С | CH ₃ CO ₂ CH(CH ₃) ₂ | KOH(aq)
warm | | | D | (CH₃)₃COH | Cr ₂ O ₇ ²⁻ /H ⁺
heat under reflux | | | E | CH ₃ COCH ₃ | NaBH ₄ | | | F | (CH₃)₃COH | PCl ₅ | | | G | CH ₃ CH=CHCH ₂ OH | MnO ₄ -/H+
heat under reflux | | For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u> (ii) During some of the reactions in (i) a colour change occurs. Complete the table below for any such reactions, stating the letter of the reaction and what the colour change is. | colour at the beginning of the reaction | colour at the end of the reaction | |---|---| colour at the beginning of the reaction | [12] [Total: 12] For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 4 Compound **G** is a naturally occurring aromatic compound that is present in raspberries. compound G | (a) | Identify the functional groups present in compound G . | | | |-----|---|--|--| | | | | | | | [2 | | | **(b)** Complete the following table with information about the reactions of the three stated reagents with compound **G**. | | T | | T | |-------------------------------|-------------|------------------------------|------------------| | reagent | observation | structure of organic product | type of reaction | | sodium
metal | | | | | aqueous
bromine | | | | | aqueous
alkaline
iodine | | | | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ (c) The dye H can be made from compound G by the route shown below. - (i) Draw the structures of the amine **J** and the intermediate **K** in the boxes above. - (ii) Suggest reagents and conditions for (d) Suggest a reaction scheme by which compound **G** and propanoic acid could be converted into compound **L**. [3] [Total: 18]