For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Motion Graphs

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 70 minutes

Score: /58

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1	(a)	Define <i>speed</i> and <i>velocity</i> and use these definitions to explain why one of these quantities is a scalar and the other is a vector.
		speed:
		velocity:
		[2]

(b) A ball is released from rest and falls vertically. The ball hits the ground and rebounds vertically, as shown in Fig. 2.1.

Fig. 2.1

The variation with time t of the velocity v of the ball is shown in Fig. 2.2.

Fig. 2.2

Air resistance is negligible.

(i)	Without calculation, use Fig. 2.2 to describe the variation with time t of the velocity of the ball from $t = 0$ to $t = 2.1$ s.
	[3
(ii)	Calculate the acceleration of the ball after it rebounds from the ground. Show you working.

- (iii) Calculate, for the ball, from t = 0 to t = 2.1 s,
 - 1. the distance moved,

distance = m [3]

2. the displacement from the initial position.

displacement = m [2]

(iv) On Fig. 2.3, sketch the variation with *t* of the speed of the ball.

Fig. 2.3

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 A stone is thrown vertically upwards. The variation with time *t* of the displacement *s* of the stone is shown in Fig. 2.1.

Fig. 2.1

(a)	Use Fig. 2.1 to describe, without calculation, the speed of the stone from $t = 0$ to $t = 3.0$ s.
	[2]
(b)	Assume air resistance is negligible and therefore the stone has constant acceleration. Calculate, for the stone,

(i) the speed at 3.0s,

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) the distance travelled from t = 0 to t = 3.0 s,

distance =	 m	[3]

(iii) the displacement from t = 0 to t = 3.0 s.

(c) On Fig. 2.2, draw the variation with time t of the velocity v of the stone from t = 0 to t = 3.0 s.

Fig. 2.2

3 The variation with time t of the velocity v of a ball is shown in Fig.

Fig. 2.1

The ball moves in a straight line from a point P at t = 0. The mass of the ball is 400 g.

(a)	Use Fig. 2.1 to describe, without calculation, the velocity of the ball from $t = 0$ to $t = 16$ s.
	[2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b)	Use	Fig. 2.1 to calculate, for the ba	II,
	(i)	the displacement from P at $t =$	10 s,
	(ii)	the acceleration at $t = 10 \mathrm{s}$,	displacement = m [2]
	(iii)	the maximum kinetic energy.	acceleration = ms ⁻² [2]
(c)	Use	e your answers in (b)(i) and (b)(i	kinetic energy =
			time = s [2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

		/* \	D (:	
4	(a)	(1)	Define	velocity.

		•••••
		[1]
(ii)	Distinguish between speed and velocity.	

(b) A car of mass 1500 kg moves along a straight, horizontal road. The variation with time *t* of the velocity *v* for the car is shown in Fig. 1.1.

Fig. 1.1

The brakes of the car are applied from t = 1.0 s to t = 3.5 s. For the time when the brakes are applied,

(i) calculate the distance moved by the car,

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) calculate the magnitude of the resultant force on the car.

resultant force =	 Ν	[3	31
100allall lolo	 	- 1 -	<i>,</i>

(c) The direction of motion of the car in (b) at time $t = 2.0 \,\mathrm{s}$ is shown in Fig. 1.2.

Fig. 1.2

On Fig. 1.2, show with arrows the directions of the acceleration (label this arrow A) and the resultant force (label this arrow F). [1]

5 (a) Define

(i)	velocity,
	[1]
(ii)	acceleration.
	[1]

(b) A car of mass 1500 kg travels along a straight horizontal road. The variation with time *t* of the displacement *x* of the car is shown in Fig. 3.1.

Fig. 3.1

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	Use Fig. 3.1 to describe qualitatively the velocity of the car during the first six seconds of the motion shown. Give reasons for your answers.
	[3]
(ii)	Calculate the average velocity during the time interval $t = 0$ to $t = 1.5$ s.
	average velocity = ms ⁻¹ [1]
(iii)	Show that the average acceleration between $t = 1.5 \mathrm{s}$ and $t = 4.0 \mathrm{s}$ is $-7.2 \mathrm{m}\mathrm{s}^{-2}$.
	[2]
(iv)	Calculate the average force acting on the car between $t = 1.5 \mathrm{s}$ and $t = 4.0 \mathrm{s}$.
	force = N [2]