# **Covalent Bonding & Shapes of Molecules**

#### **Question Paper 3**

| Level      | International A Level                  |
|------------|----------------------------------------|
| Subject    | Chemistry                              |
| Exam Board | CIE                                    |
| Topic      | Chemical Bonding                       |
| Sub-Topic  | Covalent Bonding & Shapes of Molecules |
| Paper Type | Theory                                 |
| Booklet    | Question Paper 3                       |

Time Allowed: 70 minutes

Score: /58

Percentage: /100

#### **Grade Boundaries:**

| A*   | Α      | В   | С     | D     | Е   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1 |     |      | ontact process for the manufacture of sontact process for the manufacture of sontact process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ulfuric acid was originally patented in the                                                  |
|---|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|   |     |      | step in the overall process is the reversible cence of a vanadium( $V$ ) oxide catalyst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conversion of sulfur dioxide to sulfur trioxide in                                           |
|   |     |      | $2SO_2(g) + O_2(g) \rightleftharpoons$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{2}$ 2SO <sub>3</sub> (g) $\Delta H = -196 \text{kJ mol}^{-1}$                             |
|   | (a) |      | pyrites, FeS <sub>2</sub> , in air. Iron(III) oxide is also provide in the provide is also provide in the provide in the provide is also provide in the provide in the provide is also provide in the provide in the provide is also provide in the provide in the provide is also provide in the provide in the provide is also provide in the provide in t | ction is produced is by heating the sulfide ore oduced. Write an equation for this reaction. |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   | (b) |      | sulfur trioxide produced in the Contact proulting compound is <b>then</b> reacted with water t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ocess is reacted with 98% sulfuric acid. The produce sulfuric acid.                          |
|   |     | (i)  | Explain why the sulfur trioxide is not first mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xed directly with water.                                                                     |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]                                                                                          |
|   |     | (ii) | acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n the conversion of sulfur trioxide into sulfurio                                            |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2                                                                                           |
|   | (c) |      | Sulfur dioxide and sulfur trioxide both conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in only S=O double bonds.                                                                    |
|   |     |      | Draw labelled diagrams to show the shapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of these two molecules.                                                                      |
|   |     |      | SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $SO_3$                                                                                       |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2                                                                                           |
|   |     | (ii) | For your diagrams in (i), name the shapes a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and suggest the bond angles.                                                                 |
|   |     |      | SO <sub>2</sub> shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO <sub>3</sub> shape                                                                        |
|   |     |      | SO <sub>2</sub> bond angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SO <sub>3</sub> bond angle                                                                   |

| (d) | The   | conversion of sulfur dioxide into sulfur trioxide is carried out at a temperature of 400 °C.                                                          |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (i)   | With reference to Le Chatelier's Principle and reaction kinetics, state and explain one advantage and one disadvantage of using a higher temperature. |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       | [4]                                                                                                                                                   |
|     | (ii)  | State the expression for the equilibrium constant, $K_{\rm p}$ , for the formation of sulfur trioxide from sulfur dioxide.                            |
|     |       |                                                                                                                                                       |
|     |       | $K_{p} =$                                                                                                                                             |
|     |       | [1]                                                                                                                                                   |
| (   | (iii) | 2.00 moles of sulfur dioxide and 2.00 moles of oxygen were put in a flask and left to reach                                                           |
|     |       | equilibrium. At equilibrium, the pressure in the flask was $2.00\times10^5\text{Pa}$ and the mixture contained 1.80 moles of sulfur trioxide.         |
|     |       | Calculate $K_p$ . Include the units.                                                                                                                  |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       |                                                                                                                                                       |
|     |       | $\mathcal{K}_{p} = \dots$                                                                                                                             |
|     |       | units =[5]                                                                                                                                            |
|     |       |                                                                                                                                                       |

[Total: 19]

2 (a) Successive ionisation energies for the elements fluorine, F, to bromine, Br, are shown on the graph.



| (i)  | Explain why the first ionisation energies decrease down the group.                  |       |
|------|-------------------------------------------------------------------------------------|-------|
|      |                                                                                     |       |
|      |                                                                                     |       |
|      |                                                                                     |       |
|      |                                                                                     | . [3] |
| (ii) | Explain why there is an increase in the successive ionisation energies of fluorine. |       |
|      |                                                                                     |       |
|      |                                                                                     |       |

| (b) |      | oup VII is the only group in the Periodic Table containing elements in all three states of tter at room conditions.                                                                  |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | te and explain, in terms of intermolecular forces, the trend in the boiling points of the ments down Group VII.                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      | [4]                                                                                                                                                                                  |
| (c) |      | mpounds containing different halogen atoms covalently bonded together are called rhalogen compounds.                                                                                 |
|     | (i)  | One interhalogen compound can be prepared by the reaction between iodine and fluorine. This compound has $M_{\rm r}$ = 222 and the percentage composition by mass: F, 42.8; I, 57.2. |
|     |      | Calculate the molecular formula of this interhalogen compound.                                                                                                                       |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      | molecular formula [3]                                                                                                                                                                |
|     | (ii) | Another interhalogen compound has the formula IC <i>l</i> .                                                                                                                          |
|     | ( )  | Draw a 'dot-and-cross' diagram of a molecule of this compound, showing outer shell                                                                                                   |
|     |      | electrons only. Explain whether or not you would expect this molecule to be polar.                                                                                                   |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |
|     |      |                                                                                                                                                                                      |

#### Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Some reactions involving chlorine and its compounds are shown in the reaction scheme below.



(i) Give the formulae of W, X, Y and Z.

| W |     |
|---|-----|
| X |     |
| Υ |     |
| Z |     |
|   | [4] |

(ii) Write an equation for the reaction of chlorine with **hot** NaOH(aq).

| F 0 T |
|-------|
| 1'21  |
| 121   |
|       |

- (iii) State the oxidation numbers of chlorine at the start and at the end of the reaction in (ii).
  - ......[2]
- (iv) Write an ionic equation for the reaction of Y with AgNO<sub>3</sub>(aq). Include state symbols.

......[1]

[Total: 23]

#### Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (a) Natural phosphorus consists of one isotope, <sup>31</sup>P. Chlorine exists naturally as two isotopes, <sup>35</sup>Cl 3 and <sup>37</sup>Cl, in the relative abundance ratio of 3:1.
  - (i) The mass spectrum of  $PCl_3$  contains several peaks corresponding to a number of molecular fragments.

Suggest the isotopic composition of the fragments with the following mass numbers.

| mass number | isotopic composition |
|-------------|----------------------|
| 101         |                      |
| 103         |                      |
| 105         |                      |

| (ii) | Predict the relative ratios of the peak heights of the three peaks corresponding to these |
|------|-------------------------------------------------------------------------------------------|
|      | fragments.                                                                                |
|      |                                                                                           |

[4]

**(b)** Phosphorus reacts with chlorine to form a variety of chlorides.  $PCl_5$  is an example of a compound that exists as two structures depending on the conditions.

$$\mathsf{2PC}\hspace{.01in} l_{\scriptscriptstyle{5}}(\mathsf{g}) \iff [\mathsf{PC}\hspace{.01in} l_{\scriptscriptstyle{4}}]^{\scriptscriptstyle{+}}[\mathsf{PC}\hspace{.01in} l_{\scriptscriptstyle{6}}]^{\scriptscriptstyle{-}}(\mathsf{s})$$

(i) Draw a 'dot-and-cross' diagram to show the bonding in  $PCl_5$ . Show the outer electrons only.

|    | (ii) | Draw diagrams to suggest the shapes of $[PCl_4]^+$ and $[PCl_6]^-$ .                                                                                               |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      | $ [PCl4]^+                                    $                                                                                                                    |
|    |      |                                                                                                                                                                    |
| c) |      | Phosphorus(III) oxide, $P_4O_6$ , contains no P–P or O–O bonds.<br>In the $P_4O_6$ molecule, all oxygen atoms are divalent and all phosphorus atoms are trivalent. |
|    |      | Sketch a structure for P <sub>4</sub> O <sub>6</sub> .                                                                                                             |
|    |      | 4 0                                                                                                                                                                |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    | (ii) | P <sub>4</sub> O <sub>6</sub> can act as a ligand.                                                                                                                 |
|    |      | What is meant by the term <i>ligand</i> ?                                                                                                                          |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      | [2]                                                                                                                                                                |
| d) |      | sphate ions in water can be removed by adding a solution containing $Ca^{2+}(aq)$ ions, which a precipitate of calcium phosphate, $Ca_3(PO_4)_2$ .                 |
|    | (i)  | Write an expression for the $K_{\rm sp}$ of ${\rm Ca_3(PO_4)_2}$ .                                                                                                 |
|    |      | $K_{sp}$ =                                                                                                                                                         |
|    | (ii) | The solubility of $\text{Ca}_3(\text{PO}_4)_2$ is $2.50\times 10^{-6}\text{moldm}^{-3}$ at $298\text{K}$ .                                                         |
|    |      | Calculate the solubility product, $K_{\rm sp}$ , of ${\rm Ca_3(PO_4)_2}$ at this temperature. Include the units.                                                   |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      |                                                                                                                                                                    |
|    |      | $K_{sp} = \dots $ units                                                                                                                                            |

| (e)  | What is meant by the term lattice energy?                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                 |
| (ii) | Explain why the lattice energy of calcium phosphate is <b>less</b> exothermic than that of magnesium phosphate. |
|      |                                                                                                                 |
|      | [3]                                                                                                             |

[Total: 16]