Covalent Bonding & Shapes of Molecules

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Bonding
Sub-Topic	Covalent Bonding & Shapes of Molecules
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 66 minutes

Score: /55

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1	(a)	Chle	orine exis	sts naturally as a mixture of t	wo isotopes, 35 C l and 37 C l , in the al	oundance ratio of 3:1.
	, ,			pectrum of chlorine consists		
				t the mass numbers for	these five peaks and the ident	tities of the species
				mass number	formula of species	
		(ii)	Predict :	the ratios of the abundance	es of the three species with the high] ghest mass numbers.
					ratio of abundances =	[4]
	(b)	Stro	ontium ch	nloride, $SrCl_2$, can be used	to produce a red colour in firewor	ks.
		(i)	Draw th	e 'dot-and-cross' diagram f	or strontium chloride. Show outer	shell electrons only.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) Use the following data, together with relevant data from the *Data Booklet*, to calculate a value for the lattice energy of strontium chloride. You may find it helpful to construct a Born-Haber cycle.

electron affinity per mole of chlorine atoms	-349 kJ mol⁻¹
standard enthalpy of atomisation of Sr(s)	+164 kJ mol ⁻¹
standard enthalpy of formation of $SrCl_2(s)$	-830 kJ mol ⁻¹

		lattice energy =kJ mol ⁻¹ [5]
(c)	Stro	ontium nitrate, Sr(NO ₃) ₂ , can also be used to produce a red colour in fireworks.
	(i)	Strontium nitrate can easily be prepared from strontium carbonate, SrCO ₃ .
		Suggest an equation for this preparation of strontium nitrate.
	(ii)	Write an equation for the reaction that occurs when strontium nitrate is heated.
		[2]
(d)	Des	scribe and explain the trend in the thermal stabilities of the nitrates of the Group II elements.
		[3]

[Total: 14]

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- Valence Shell Electron Pair Repulsion theory (VSEPR) is a model of electron-pair repulsion (including lone pairs) that can be used to deduce the shapes of, and bond angles in, simple molecules.
 - (a) Complete the table below by using simple hydrogen-containing compounds. One example has been included.

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH ₃
4	0		
3	1		
2	2		

[3]

1	h\	Tellurium,	T_{\sim}	nroton	numbor	E2 :	0 11000	in	nhatavalt	\sim i \sim	
l	IJ)	renunum.	IE.	ווטוטוט	Hullibel	0Z. I	ร นระน	1111	DITOLOVOIL	aic	Cells.

When fluorine gas is passed over tellurium at 150 $^{\circ}$ C, the colourless gas TeF₆ is formed.

(i) Draw a 'dot-and-cross' diagram of the TeF₆ molecule, showing outer electrons only.

(ii)	What will be the shape of the TeF ₆ molecule?
(iii)	What is the F–Te–F bond angle in TeF ₆ ?

[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 (a) Gaseous ammonia reacts with gaseous hydrogen chloride to form solid ammonium chloride.

$$NH_3 + HCl \rightarrow NH_4Cl$$

The bonding in ammonium chloride includes ionic, covalent and co-ordinate (dative covalent) bonds.

Complete the following 'dot-and-cross' diagram of the bonding in ammonium chloride. For **each** of the six atoms show **all** the electrons in its outer shell. Three electrons have already been included.

Use the following code for your electrons.

- electrons from chlorine
- x electrons from hydrogen
- o electrons from nitrogen

[3]

- **(b)** When a sample of dry ammonia is needed in the laboratory, the gas is passed through a tower containing lumps of solid calcium oxide, CaO.
 - (i) Suggest why the usual drying agent for gases, concentrated H₂SO₄, is **not** used for ammonia.

(ii) Write an equation for the reaction between CaO and $\rm H_2O$.

(iii) Suggest why CaO rather than MgO is used to dry ammonia.

101

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) (i)	Write an equation showing the thermal decomposition of calcium nitrate, $Ca(NO_3)_2$.
(ii)	State and explain how the thermal stabilities of the nitrates vary down Group II.
	[4]
	[Total: 10]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 (a) The nitrate ion, NO_3^- , contains a dative covalent bond.

Complete the following 'dot-and-cross' diagram of the bonding in the nitrate ion. For **each** of the four atoms show **all** the electrons in its outer shell. Three electrons have already been included.

Use the following code for your electrons.

- electrons from oxygen
- x electrons from nitrogen
- □ added electron(s) responsible for the overall negative charge

(ii) Describe and explain the trend that is observed in the thermal stabilities of the Group II nitrates.

[4]

(c) When concentrated nitric acid, HNO₃, is added to copper turnings, a brown gas is evolved. Use data from the *Data Booklet* to construct an ionic equation for this reaction.

[Total: 9]

[2]

[3]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5	The ele	ments of the third period of the Periodic Table, sodium to sulfur, all form chlorides by
	direct co	ombination.
	(a) (i)	Sulfur forms a number of chlorides which are liquid at room temperature. Which other element of the third period forms a chloride which is liquid at room temperature?
	(ii)	Name one element of the third period which burns in chlorine with a coloured flame.
	(iii)	Aluminium chloride may be produced by passing a stream of chlorine over heated aluminium powder in a long hard-glass tube. State two observations you could make during this reaction.
		and
	(iv)	Write a balanced equation, with state symbols, for this reaction of aluminium with chlorine.
	(v)	No chloride of argon has ever been produced. Suggest a reason for this.
		[7]
		[1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- **(b)** When chlorides of the elements of the third period are added to water, some simply dissolve while others can be seen to react with the water.
 - (i) Complete the table below, stating how the chlorides of Na, A*l*, and Si behave when mixed with water. In the first column use only the terms 'dissolve' or 'react'.

element	Does the chloride dissolve or react?	approximate pH of the resulting solution
Na		
Al		
Si		

(ii)	What <i>type of reaction</i> takes place between a chloride and water?

[7]

(c) Sulfur forms the compound S_4N_4 with nitrogen. The structure of S_4N_4 is shown below. Assume all bonds shown are single bonds.

(i)	Determine the number of lone pairs of electrons around a nitrogen atom and a sulfur
	atom in S_4N_4 .

nitrogen atom
sulfur atom
Which bond angle, a or b, in the S ₄ N ₄ molecule will be smaller? Explain your answer.

(ii)

[Total: 16]

[2]