For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Motion Graphs

Question paper 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Kinematics
Sub Topic	Motion Graphs
Paper Type	Theory
Booklet	Question paper 4

Time Allowed: 48 minutes

Score: /40

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) State what is meant by work done.

 	 	[1]

(b) A trolley of mass 400 g is moving at a constant velocity of 2.5 m s⁻¹ to the right as shown in Fig. 3.1.

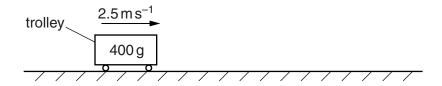


Fig. 3.1

Show that the kinetic energy of the trolley is 1.3 J.

[2]

(c) The trolley in (b) moves to point P as shown in Fig. 3.2.

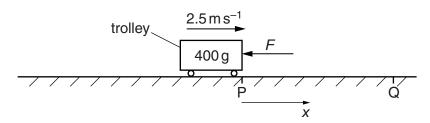


Fig. 3.2

At point P the speed of the trolley is $2.5 \,\mathrm{m\,s^{-1}}$.

A variable force F acts to the left on the trolley as it moves between points P and Q. The variation of F with displacement x from P is shown in Fig. 3.3.

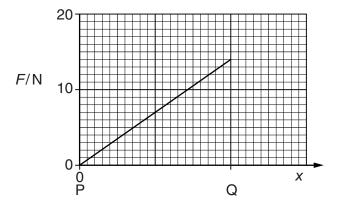


Fig. 3.3

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

The trolley comes to rest at point Q.

(i) Calculate the distance PQ.

(ii) On Fig. 3.4, sketch the variation with *x* of velocity *v* for the trolley moving between P and Q.

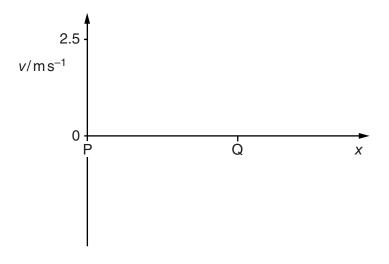


Fig. 3.4

[2]

2	(a) (i)	Define acceleration.
		[1
	(ii)	State Newton's first law of motion.

(b) The variation with time t of vertical speed v of a parachutist falling from an aircraft is shown in Fig. 1.1.



Fig. 1.1

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	Calculate the distance travelled by the parachutist in the first 3.0s of the motion.
(::)	distance =
(ii)	Explain the variation of the resultant force acting on the parachutist from $t = 0$ (point A) to $t = 15$ s (point C).
	[3]
(iii)	Describe the changes to the frictional force on the parachutist 1. at $t = 15$ s (point C),
	[1]
	2. between $t = 15$ s (point C) and $t = 22$ s (point E).
	[1]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iv)	The mass of the parachutist is	95 kg.	
	Calculate, for the parachutist between $t = 15 s$ (point C) and $t = 17 s$ (point D),		
	1. the average acceleration,		
	2. the average frictional force.	acceleration = ms ⁻²	[2]
		frictional force =N	[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 A motor drags a log of mass 452 kg up a slope by means of a cable, as shown in Fig.

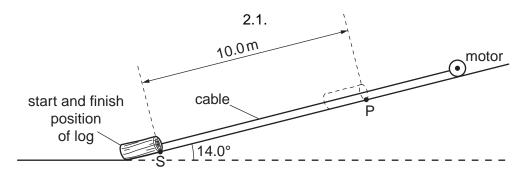


Fig. 2.1

The slope is inclined at 14.0° to the horizontal.

(a) Show that the component of the weight of the log acting down the slope is 1070 N.

(b) The log starts from rest. A constant frictional force of 525 N acts on the log. The log accelerates up the slope at $0.130\,\mathrm{m\,s^{-2}}$.

(i) Calculate the tension in the cable.

tension = N [3]

[1]

(ii) The log is initially at rest at point S. It is pulled through a distance of 10.0 m to point P.

Calculate, for the log,

1. the time taken to move from S to P,

2. the magnitude of the velocity at P.

velocity =
$$m s^{-1}$$
 [1]

(c) The cable breaks when the log reaches point P. On Fig. 2.2, sketch the variation with time *t* of the velocity *v* of the log. The graph should show *v* from the start at S until the log returns to S. [4]

Fig. 2.2

4 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1.

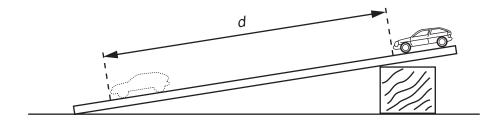


Fig. 3.1

The time t to move from rest through a distance d is found for different values of d. A graph of d (y-axis) is plotted against t^2 (x-axis) as shown in Fig. 3.2.

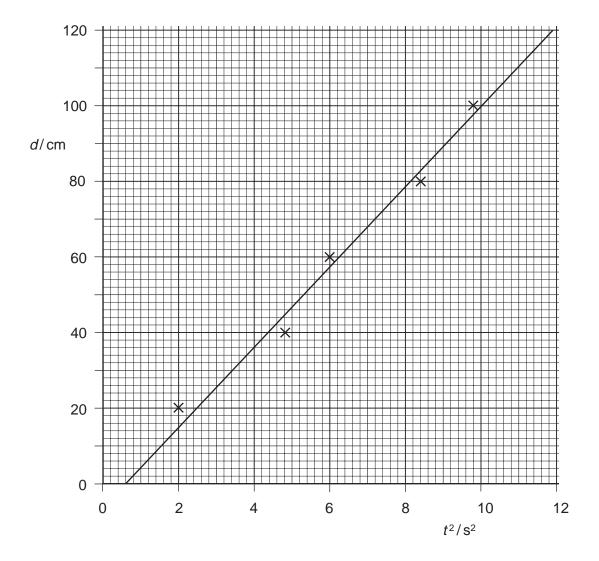


Fig. 3.2

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(a)	ory suggests that the graph is a straight line through the origin. ne the feature on Fig. 3.2 that indicates the presence of		
	(i)	random error,	
	(ii)	systematic error.	
(b)	(i)	Determine the gradient of the line of the graph in Fig. 3.2.	[2]
		gradient =	[2]
	(ii)	Use your answer to (i) to calculate the acceleration of the toy down the slope. Explain your working.	
		acceleration = ms ⁻²	[3]