Covalent Bonding & Shapes of Molecules

Question Paper 6

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Bonding
Sub-Topic	Covalent Bonding & Shapes of Molecules
Paper Type	Theory
Booklet	Question Paper 6

Time Allowed: 75 minutes

Score: /62

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

The elements of Group IV all form tetrachlorides with the general formula $M{\rm C}\,l_4$.

1

(a)	Dra	w a diagram of a molecule of $\mathrm{SiC}l_4$ stating bond angles.	
(b)	Des	scribe and explain how the volatilities of the Group IV chlorides vary down the gro	[2] oup.
(c)	 The	e relative stabilities of the M^{2+} (aq) and M^{4+} (aq) ions also vary down Group IV. Use the <i>Data Booklet</i> to illustrate this observation when $M = \operatorname{Sn}$ and $M = \operatorname{Pb}$.	
	(ii)	Use the <i>Data Booklet</i> to predict the products formed, and write equations for reactions occurring, when $ \bullet \text{an equimolar mixture of } Sn^{2+}(aq) \text{ and } Sn^{4+}(aq) \text{ is added to } I_2(aq), $	the
		 an equimolar mixture of Pb²⁺(aq) and Pb⁴⁺(aq) is added to SO₂(aq). 	
			 [4]

(d)	(i)	The Sn–C l bond energy is +315 kJ mol ⁻¹ . Use this and other values from the <i>Data Booklet</i> to calculate ΔH^{Θ} for the reaction
		$MCl_2(g) + Cl_2(g) \rightarrow MCl_4(g)$
		for the following cases.
		• $M = Si$
		$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
		• <i>M</i> = Sn
		$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
	(ii)	Do your results agree with the trend in relative stabilities of the +2 and +4 oxidation states in (c) ? Explain your answer.
		[3]
		[Total: 11]

2	Ketene, C ₂ H ₂ O, is a member of a class of unsaturated organic compounds that is widely used in pharmaceutical research for the synthesis of organic compounds.	У
	CH ₂ =C=O	

		ketene
(a)	(i)	Suggest values for the H-C-H and C=C=O bond angles in ketene.
		H-C-H C=C=O
	(ii)	By considering the structure of the molecule, suggest why the name <i>ketene</i> is used.
		[3]
(b)	Kete	ene burns completely in air to form carbon dioxide and water.
	(i)	Write a balanced equation for this reaction.
	(ii)	Use your equation to calculate the volume of ${\rm CO_2}$, in ${\rm dm^3}$, measured at room temperature and pressure, which will be formed when 3.5 g of ketene are burned in an excess of air.
		Give your answer to two significant figures.
		volume of CO ₂ = dm ³ [4]

)	(i)	Define	the term standard enthalpy chan	ge of formation.	
	(ii)	Use th	e data below to calculate the st	andard enthalpy ch	ange of formation
				$\Delta H^{\rm e}/{\rm kJ~mol^{-1}}$	
			standard enthalpy change of formation of CO ₂	-395	
			standard enthalpy change of combustion of H ₂	-286	
			standard enthalpy change of combustion of CH ₂ =C=O	-1028	
					[1
)		ene can	be converted directly into ethan	noic acid, CH ₃ CO ₂ F	I, by reaction with
	Sug	gest the	e identity of A .		
					[
					[Total: 14

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 Ethene, C_2H_4 , and hydrazine, N_2H_4 , are hydrides of elements which are adjacent in the Periodic Table. Data about ethene and hydrazine are given in the table below.

	C ₂ H ₄	N_2H_4
melting point/°C	-169	+2
boiling point/°C	-104	+114
solubility in water	insoluble	high
solubility in ethanol	high	high

(a)	 Ethene and hydrazine have a similar arrangement of atoms but differently shape molecules. 		
	(i)	What is the H-C-H bond angle in ethene?	
	(ii)	Draw a 'dot-and-cross' diagram for hydrazine.	
	(iii)	What is the H-N-H bond angle in hydrazine?	
		[4]	
(b)	Sug	melting and boiling points of hydrazine are much higher than those of ethene. Igest reasons for these differences in terms of the intermolecular forces each inpound possesses.	
		[3]	

(c)		lain, with the aid of a diagram showing lone pairs of electrons and dipoles, whazine is very soluble in ethanol.	ıy
		[:	3]
Eth	ene a	and hydrazine each react with HCl.	
(d)	Wh	en ethene is reacted with HC l , C $_2$ H $_5$ C l is the only product.	
	(i)	Using structural formulae, give an equation for the reaction between ethene an HCl.	ıd
	(ii)	What type of reaction occurs between HCl and ethene?	
	(iii)	Explain why there is no further reaction between $\mathrm{C_2H_5C}l$ and $\mathrm{HC}l$.	••
		[i	 3]
(e)		en aqueous hydrazine is reacted with HC l , a solid compound of formula N $_2$ H $_5$ C l masolated. When an excess of HC l is used, a second solid, N $_2$ H $_6$ C l_2 , is formed.	зy
	(i)	Suggest what type of reaction occurs between hydrazine and HCl.	
	(ii)	What feature of the hydrazine molecule enables this reaction to occur?	
	(iii)	Suggest why one molecule of hydrazine is able to react with one or two molecule of HCl.) S
		[,	3]

[Total: 16]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 Copper and iodine are both solids which have different physical and chemical properties. Each element has the same face-centred crystal structure which is shown below.

The particles present in such a crystal may be atoms, molecules, anions or cations. In the diagram above, the particles present are represented by ...

(a)) Which type of particles are present in the iodine crystal? Give their formula.		
	part	icle	
	form	nula[2]
(b)		en separate samples of copper or iodine are heated to 50°C, the copper remains a olid while the iodine turns into a vapour.	เร
	(i)	Explain, in terms of the forces present in the solid structure, why copper remains solid at 50°C .	а
	(ii)	Explain, in terms of the forces present in the solid structure, why iodine turns into vapour when heated to 50°C .	а
		[-	 4]

. , . ,	Although copper is a relatively unreactive metal, when it is heated to a high temperature in an excess of chlorine, copper(II) chloride is formed.
	How does chlorine behave in this reaction?
(ii)	When a mixture of copper and iodine is heated to a high temperature, no reaction occurs.
	Suggest a reason for this difference.
	[2]
	[Total: 8]

5

[2]
[2]
[3]
data.

(e)	Carbon disulphide reacts with nitrogen monoxide, NO, to form a yellow solid and two colourless gases which are produced in a 1:1 molar ratio.
	Deduce the identity of each gas and write a balanced equation for the reaction.
	gases and
	equation[3]
	[Total: 13]