Probability Question Paper 5

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Probability
Sub Topic	
Booklet	Question Paper 5

Time Allowed:	53 minutes
Score:	$/ 44$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

In a certain hotel, the lock on the door to each room can be opened by inserting a key card. The key
1 card can be inserted only one way round. The card has a pattern of holes punched in it. The card has 4 columns, and each column can have either 1 hole, 2 holes, 3 holes or 4 holes punched in it. Each column has 8 different positions for the holes. The diagram illustrates one particular key card with 3 holes punched in the first column, 3 in the second, 1 in the third and 2 in the fourth.

(i) Show that the number of different ways in which a column could have exactly 2 holes is 28 .
(ii) Find how many different patterns of holes can be punched in a column.
(iii) How many different possible key cards are there?

2 Rachel and Anna play each other at badminton. Each game results in either a win for Rachel or a win for Anna. The probability of Rachel winning the first game is 0.6 . If Rachel wins a particular game, the probability of her winning the next game is 0.7 , but if she loses, the probability of her winning the next game is 0.4 . By using a tree diagram, or otherwise,
(i) find the conditional probability that Rachel wins the first game, given that she loses the second,
(ii) find the probability that Rachel wins 2 games and loses 1 game out of the first three games they play.

3 Jason throws two fair dice, each with faces numbered 1 to 6 . Event A is 'one of the numbers obtained is divisible by 3 and the other number is not divisible by 3 '. Event B is 'the product of the two numbers obtained is even'.
(i) Determine whether events A and B are independent, showing your working.
(ii) Are events A and B mutually exclusive? Justify your answer.

4

A survey is undertaken to investigate how many photos people take on a one-week holiday and also how many times they view past photos. For a randomly chosen person, the probability of taking fewer than 100 photos is x. The probability that these people view past photos at least 3 times is 0.76 . For those who take at least 100 photos, the probability that they view past photos fewer than 3 times is 0.90 . This information is shown in the tree diagram. The probability that a randomly chosen person views past photos fewer than 3 times is 0.801 .
(i) Find x.
(ii) Given that a person views past photos at least 3 times, f nd the probability that this person takes at least 100 photos.

5 A fair die is thrown 10 times. Find the probability that the number of sixes obtained is between 3 and 5 inclusive.

6

Nikita goes shopping to buy a birthday present for her mother. She buys either a scarf, with probability 0.3 , or a handbag. The probability that her mother will like the choice of scarf is 0.72 . The probability that her mother will like the choice of handbag is x. This information is shown on the tree diagram. The probability that Nikita's mother likes the present that Nikita buys is 0.783 .
(i) Find x.
(ii) Given that Nikita's mother does not like her present, f nd the probability that the present is a scarf.

7 When Joanna cooks, the probability that the meal is served on time is $\frac{1}{5}$. The probability that the kitchen is left in a mess is $\frac{3}{5}$. The probability that the meal is not served on time and the kitchen is not left in a mess is $\frac{3}{10}$. Some of this information is shown in the following table.

	Kitchen left in a mess	Kitchen not left in a mess	Total
Meal served on time			$\frac{1}{5}$
Meal not served on time		$\frac{3}{10}$	
Total			1

(i) Copy and complete the table.
(ii) Given that the kitchen is left in a mess, f nd the probability that the meal is not served on time.

