Probability Question Paper 8

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Probability
Sub Topic	
Booklet	Question Paper 8

Time Allowed:	58 minutes
Score:	$/ 48$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

The possible values of the random variable X are the 8 integers in the set $\{-2,-1,0,1,2,3,4,5\}$.
1 The probability of X being 0 is $\frac{1}{10}$. The probabilities for all the other values of X are equal. Calculate
(i) $\mathrm{P}(X<2)$,
(ii) the variance of X,
(iii) the value of a for which $\mathrm{P}(-a \leqslant X \leqslant 2 a)=\frac{17}{35}$.

2 (a) (i) Find the probability of getting at least one 3 when 9 fair dice are thrown.
(ii) When n fair dice are thrown, the probability of getting at least one 3 is greater than 0.9 . Find the smallest possible value of n.
(b) A bag contains 5 green balls and 3 yellow balls. Ronnie and Julie play a game in which they take turns to draw a ball from the bag at random without replacement. The winner of the game is the frst person to draw a yellow ball. Julie draws the frst ball. Find the probability that Ronnie wins the game.

3 A biased die was thrown 20 times and the number of 5 s was noted. This experiment was repeated many times and the average number of 5 s was found to be 4.8 . Find the probability that in the next 20 throws the number of 5 s will be less than three.

4 Tim throws a fair die twice and notes the number on each throw.
(i) Tim calculates his f nal score as follows. If the number on the second throw is a 5 he multiplies the two numbers together, and if the number on the second throw is not a 5 he adds the two numbers together. Find the probability that his f nal score is
(a) 12 ,
(b) 5 .
(ii) Events A, B, C are def ned as follows.
A : the number on the second throw is 5
B : the sum of the numbers is 6
C : the product of the numbers is even
By calculation f nd which pairs, if any, of the events A, B and C are independent.

5 The probability that Sue completes a Sudoku puzzle correctly is 0.75 .
(i) Sue attempts n Sudoku puzzles. Find the least value of n for which the probability that she completes all n puzzles correctly is less than 0.06 .

Sue attempts 14 Sudoku puzzles every month. The number that she completes successfully is denoted by X.
(ii) Find the value of X that has the highest probability. You may assume that this value is one of the two values closest to the mean of X.
(iii) Find the probability that in exactly 3 of the next 5 months Sue completes more than 11 Sudoku puzzles correctly.

6 In the holidays Martin spends 25% of the day playing computer games. Martin's friend phones him once a day at a randomly chosen time.
(i) Find the probability that, in one holiday period of 8 days, there are exactly 2 days on which Martin is playing computer games when his friend phones.
(ii) Another holiday period lasts for 12 days. State with a reason whether it is appropriate to use a normal approximation to f nd the probability that there are fewer than 7 days on which Martin is playing computer games when his friend phones.
(iii) Find the probability that there are at least 13 days of a 40-day holiday period on which Martin is playing computer games when his friend phones.

