Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Particle Physics

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Particle Physics
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 75 minutes

Score: /62

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1

	ranium-235 nucleus absorl ction is given by	os a neutron a	and then splits	into two nuclei. A possible nuclear
	²³⁵ U + ^a _b ı	$ ightharpoonup ightharpoonup rac{93}{37}$ Rb -	$+ \frac{c}{d}X + 2\frac{a}{b}n$	+ energy.
(a)	State the constituent partic	cles of the urani	um-235 nucleu	IS.
				[1]
(b)	Complete Fig. 7.1 for this r	eaction.		
			value	
		а		
		b		
		С		
		d		
		Fig.	71	[3]
(c)	Suggest a possible form of	_		on
(0)	Suggest a possible form of			
(al\	Evalois using the law of m			[1]
(a)	Explain, using the law of fr	iass-energy cor	iservation, now	v energy is released in this reaction.
				[0]
				[2]

2

Th	e eq	uation represents the spontaneous radioactive decay of a nucleus of bismuth-212.
		$^{212}_{83}$ Bi \rightarrow X + $^{208}_{81}$ T l + 6.2MeV
(a)	(i)	Explain the meaning of spontaneous radioactive decay.
		[1]
	(ii)	State the constituent particles of X.
		[1]
(b)	(i)	Use the conservation of mass-energy to explain the release of 6.2 MeV of energy in this reaction.
		[2]
	(ii)	Calculate the energy, in joules, released in this reaction.
		energy = J [1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2	In the decay of a nucleus o	£ 210 Do on	s. portiolo io omittod with	operav E 2 MeV
3	in the decay of a nucleus o	1 ₈₄ Po, an	α -particle is emitted with	energy 5.3 iviev

The emission is represented by the nuclear equation

$$^{210}_{84} \text{Po} \rightarrow ^{\text{A}}_{\text{B}} \text{X} + \alpha + \text{energy}$$

(a) (i) On Fig. 7.1, complete the number and name of the particle, or particles, represented by A and B in the nuclear equation.

	number	name of particle or particles
А		
В		

[1]

(ii) State the form of energy given to the α -particle in the decay of $^{210}_{84}$ Po.

_____[1]

(b) A sample of polonium $^{210}_{84}$ Po emits 7.1 x 10¹⁸ α -particles in one day.

Calculate the mean power output from the energy of the α -particles.

4	(a)	Sta	te what is meant by	
		α-р	article:	
		β-ра	article:	
		γ-ra	diation:	[2
	(b)		scribe the changes to the proton number and the nucleon number of a nucleus where ssion occurs of	er
		(i)	an α -particle,	
		(ii)	a β-particle,	
		(iii)	γ-radiation.	ι.
				[1]

5	(a)	Describe the two main results of the α -particle scattering experiment.
		result 1:
		result 2:
		[3]
	(b)	Relate each of the results in (a) with the conclusions that were made about the nature of atoms.
		result 1:
		result 2:
		[3]

6

		m nucleus ²¹⁰ Po is ra reaction for this deca	adioactive and decays with the emission of $\text{an}\alpha\text{-particle}.$ y is given by	The
			$^{210}_{84}$ Po $\rightarrow {}^{W}_{X}$ Q + ${}^{Y}_{Z}\alpha$.	
(a)	(i)	State the values of	<i>W</i>	
			X	
			Y	
			Z	[2]
	(ii)		eems not to be conserved in the reaction.	
(b)	The	reaction is spontane	eous. Explain the meaning of spontaneous.	

(a) Two isotope	s of uranium are uranium-235 ($^{235}_{92}$ U) and uranium-238 ($^{238}_{92}$ U).
(i) Describ	e in detail an atom of uranium-235.
	[4]
(ii) With re	ference to the two forms of uranium, explain the term isotopes.
	[2]
(b) When a ura	nium-235 nucleus absorbs a neutron, the following reaction may occur:
	$^{235}_{92}$ U + $^{W}_{X}$ n \rightarrow $^{148}_{57}$ La + $^{Z}_{Y}$ Q + 3^{W}_{X} n
(i) Determ	ine the values of Y and Z.
Y=	
Z=	[2
(ii) Explain	why the sum of the masses of the uranium nucleus and of the neutron does
	al the total mass of the products of the reaction.
	[2]

8	(a)	Des	scribe the structure of an atom of the nuclide $^{235}_{92}$ U.	
				[2]
	(b)		deflection of α -particles by a thin metal foil is investigated with the arrangement wn in Fig. 6.1. All the apparatus is enclosed in a vacuum.	∍nt
			vacuum detector of α-particles	
		α S	path of deflected α-particles	
			The second of th	
			Fig. 6.1	
		The	detector of α -particles, D, is moved around the path labelled WXY.	
		(i)	Explain why the apparatus is enclosed in a vacuum.	
				[1]
		(ii)	State and explain the readings detected by D when it is moved along WXY.	
				[3]

(c)	A beam of α -particles produces a current of 1.5 pA. Calculate the number of α -particles per second passing a point in the beam.

number =
$$s^{-1}$$
 [3]

9	(a) $\beta\mbox{-radiation}$ is emitted during the spontaneous radioactive decay of an unstable nucleus.	
	(i)	State the nature of a β-particle. [1]
	(ii)	
		1. 2.
	(iii)	[2] Explain the meaning of spontaneous radioactive decay.
		[1]
		e following equation represents the decay of a nucleus of hydrogen-3 by the emission a $\beta\mbox{-particle}.$
	Со	emplete the equation.
		$^{3}_{1}H \rightarrow \dots He + \dots \beta$ [2]
	(c) Th	e β-particle is emitted with an energy of 5.7 × 10^3 eV.
	Ca	lculate the speed of the β -particle.
		speed = ms ⁻¹ [3]
		different isotope of hydrogen is hydrogen-2 (deuterium). Describe the similarities and ferences between the atoms of hydrogen-2 and hydrogen-3.
		[2]