Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Particle Physics

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Particle Physics
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 78 minutes

Score: /65

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

l (a	a) T	he spontaneous decay of polonium is shown by the nuclear equation
		$^{21}_{84}PO \rightarrow ^{206}_{82}Pb + X.$
	(i)	State the composition of the nucleus of X.
		[1]
	(ii)	The nuclei X are emitted as radiation. State two properties of this radiation.
		1
		2
		[2]
(b)	of I	e mass of the polonium (Po) nucleus is greater than the combined mass of the nuclei ead (Pb) and X. Use a conservation law to explain qualitatively how this decay is sible.

.....[3]

2	A radioactive source emits α -radiation and γ -radiation.					
	Explain how it may be shown that the source does not emit $\beta\mbox{-radiation}$ using					
	(a) the absorption properties of the radiation,					
		[2]				
	(b)	the effects of a magnetic field on the radiation.				

3	(a)	Two	isotopes of the element uranium are $^{235}_{92}$ U and $^{238}_{92}$ U.
		Ехр	lain the term isotope.
			[2]
	(b)	(i)	In a nuclear reaction, proton number and neutron number are conserved. Other than proton number and neutron number, state a quantity that is conserved in a nuclear reaction.
			[1]
		(ii)	When a nucleus of uranium-235 absorbs a neutron, the following reaction may take place.
			$^{235}_{92}U + ^{a}_{b}n \longrightarrow ^{141}_{x}Ba + ^{y}_{36}Kr + 3 ^{a}_{b}n$
			State the values of a, b, x and y.
			a =
			<i>b</i> =
			<i>x</i> =
			y =[3]
	(c)	Stat	en the nucleus of $^{238}_{92}$ U absorbs a neutron, the nucleus decays, emitting an α -particle. te the proton number and nucleon number of the nucleus that is formed as a result ne emission of the α -particle.
			proton number =
			nucleon number =[2]

(ii) random.			
	mplete the charge and peeds of $lpha$ -particles an		
	g-particle	β-particle	v-radiation
charge	α-particle	β-particle	γ-radiation 0
charge mass	α-particle 4u	β-particle	γ-radiation 0
		β-particle up to 0.99c	
mass	4u		
mass speed	4u Fig	up to 0.99 <i>c</i>	0
mass speed	4u	up to 0.99 <i>c</i>	0

5		e results of the $\alpha\text{-particle}$ scattering experiment provided evidence for the existence and all size of the nucleus.				
	(a)	Stat	e the result that provided evidence for			
		(i)	the small size of the nucleus, compared with the atom,			
			[2]			
		(ii)	the nucleus being charged and containing the majority of the mass of the atom.			
			[2]			
	(b)	Sug	$\alpha\text{-particles}$ in this experiment originated from the decay of a radioactive nuclide. gest two reasons why $\beta\text{-particles}$ from a radioactive source would be inappropriate his type of scattering experiment.			
		1				
		2				
			[2]			

6	One	e of t	the isotopes of uranium is uranium-23	8 (²³⁸ ₉₂ U).	
	(a)	Sta	te what is meant by isotopes.		
					[2]
	(b)	For	a nucleus of uranium-238, state		
		(i)	the number of protons,		
				number =	[1]
		(ii)	the number of neutrons.		
				number =	[1]
	(c)	A u	ranium-238 nucleus has a radius of 8	.9 x 10 ^{−15} m.	
		Cal	culate, for a uranium-238 nucleus,		
		(i)	its mass,		
				mass =	kg [2]
		(ii)	its mean density.		
				density =kgn	n ^{–3} [2]

(d)	The density of a lump of uranium is $1.9 \times 10^4 \text{kg m}^{-3}$. Using your answer to (c)(ii) , suggest what can be inferred about the structure of thatom.
	[2

7	(a)	The Stat	radioactive decay of some nuclei gives rise to the emission of $\alpha\mbox{-particles}.$ e
		(i)	what is meant by an α -particle,[1]
		(ii)	two properties of α -particles.
			1
			2
			[2]
	(b)		possible nuclear reaction involves the bombardment of a stationary nitrogen-14 eus by an $lpha$ -particle to form oxygen-17 and another particle.
		(i)	Complete the nuclear equation for this reaction.
			${}^{14}_{7}N + {}^{}_{}\alpha \rightarrow {}^{17}_{8}O +$ [2]
		(ii)	The total mass-energy of the nitrogen-14 nucleus and the α -particle is less than that of the particles resulting from the reaction. This mass-energy difference is 1.1 MeV.
			1. Suggest how it is possible for mass-energy to be conserved in this reaction.
			2. Calculate the speed of an α -particle having kinetic energy of 1.1 MeV.

8	atm	iosph	erty of α -particles is that they produce a high density of ionisation of air at eric pressure. In this ionisation process, a neutral atom becomes an ion pair. The s a positively-charged particle and an electron.
	(a)	Stat	re
		(i)	what is meant by an α -particle,
			[1]
		(ii)	an approximate value for the range of α -particles in air at atmospheric pressure.
			range =cm [1]
	(b)		energy required to produce an ion pair in air at atmospheric pressure is 31 eV. α -particle has an initial kinetic energy of 8.5 × 10 ⁻¹³ J.
		(i)	Show that 8.5×10^{-13} J is equivalent to 5.3 MeV.
			[1]
		(ii)	Calculate, to two significant figures, the number of ion pairs produced as the $\alpha\text{-particle}$ is stopped in air at atmospheric pressure.
			number =[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(iii) Using your answer in (a)(ii), estimate the average number of ion pairs produced

per unit length of the track of the α -particle as it is brought to rest in air.
number per unit length =[2]

9 An α -particle A approaches and passes by a stationary gold nucleus N. The path is illustrated in Fig. 7.1.

Fig. 7.1

- (a) On Fig. 7.1, mark the angle of deviation D of this α -particle as a result of passing the nucleus N. [1]
- (b) A second α -particle B has the same initial direction and energy as α -particle A. On Fig. 7.1, complete the path of α -particle B as it approaches and passes by the nucleus N. [2]

(C)	State what can be interred about atoms from the observation that very few α -particles experience large deviations.
	[2]

(d) The nucleus N could be one of several different isotopes of gold.

different deviations of a particular α-particle.

Suggest, with an explanation, whether different isotopes of gold would give rise to

[2]