Probability distribution table Question Paper 2

Level	International A Level
Subject	Maths
Exam Board	CIE
Торіс	Descrete random variables
Sub Topic	Probability distribution table
Booklet	Question Paper 2

Time Allowed:	59 minutes
Score:	/ 49
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Ashok has 3 green pens and 7 red pens. His friend Rod takes 3 of these pens at random, without replacement. Draw up a probability distribution table for the number of green pens Rod takes. [4]

2 The discrete random variable *X* has the following probability distribution.

x	-3	0	2	4
$\mathbf{P}(X=x)$	р	q	r	0.4

- Given that E(X) = 2.3 and Var(X) = 3.01, f nd the values of p, q and r.
- 3 A team of 4 is to be randomly chosen from 3 boys and 5 girls. The random variable X is the number of girls in the team.
 - (i) Draw up a probability distribution table for *X*. [4]
 - (ii) Given that $E(X) = \frac{5}{2}$, calculate Var(X). [2]

4 The discrete random variable X takes the values 1, 4, 5, 7 and 9 only. The probability distribution of X is shown in the table.

x	1	4	5	7	9
$\mathbf{P}(X=x)$	4 <i>p</i>	$5p^2$	1.5 <i>p</i>	2.5 <i>p</i>	1.5 <i>p</i>

Find *p*.

[3]

[6]

- 5 In a probability distribution the random variable X takes the value x with probability kx, where x takes values 1, 2, 3, 4, 5 only.
 - (i) Draw up a probability distribution table for X, in terms of k, and f nd the value of k. [3]

[2]

(ii) Find E(X).

6 The probability distribution of the random variable *X* is shown in the following table.

x	-2	-1	0	1	2	3
$\mathbf{P}(X=x)$	0.08	р	0.12	0.16	q	0.22

The mean of X is 1.05.

- (i) Write down two equations involving p and q and hence f nd the values of p and q. [4]
- (ii) Find the variance of X. [2]
- 7 In a particular discrete probability distribution the random variable X takes the value $\frac{120}{r}$ with probability $\frac{r}{45}$, where r takes all integer values from 1 to 9 inclusive.
 - (i) Show that $P(X = 40) = \frac{1}{15}$. [2]
 - (ii) Construct the probability distribution table for *X*. [3]
 - (iii) Which is the modal value of X? [1]
 - (iv) Find the probability that X lies between 18 and 100. [2]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 8 A fair die has one face numbered 1, one face numbered 3, two faces numbered 5 and two faces numbered 6.
 - (i) Find the probability of obtaining at least 7 odd numbers in 8 throws of the die. [4]

The die is thrown twice. Let X be the sum of the two scores. The following table shows the possible values of X.

		Second throw						
		1	3	5		6	6	
	1	2	4	6		7	7	
	3	4	6	8		9	9	
First	5	6	8	10	10	11	11	
throw	5	6	8	10	10	11	11	
	6	7	9	11	11	12	12	
	6	7	9	11	11	12	12	

(ii)	Draw up a table showing the probability distribution of <i>X</i> .	[3]
(iii)	Calculate E(X).	[2]
(iv)	Find the probability that X is greater than $E(X)$.	[2]