Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Particle Physics

Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Particle Physics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed: 75 minutes

Score: /62

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Uranium-23 6_{92}^{36} U) and Uranium-237 ($_{92}^{237}$ U) are both radioactive. Uranium-236 is an α -emitter and Uranium-237 is a β -emitter.

1	(a)	Distinguish	hetween an	~-narticle	and a	R-narticle
ı	(a)	Distilliquisi	between an	α-particle	anu a	p-particle

[4]		

(b) The grid of Fig. 7.1 shows some proton numbers *Z* on the *x*-axis and the number *N* of neutrons in the nucleus on the *y*-axis.

Fig. 7.1

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

The α -decay of Uranium-236 ($^{236}_{92}$ U) is represented on the grid. This decay produces a nucleus of thorium (Th).

(i)	Write down the nuclear equation for this α -decay.			
	[2]			
(ii)	On Fig. 7.1, mark the position for a nucleus of			

- 1. Uranium-237 (mark this position with the letter U),
- 2. Neptunium, the nucleus produced by the β -decay of Uranium-237 (mark this position with the letters Np). [2]

2		lence for the nuclear atom was provided by the α -particle scattering experiment. ate the results of this experiment.
		[2]
	(b) Gi	ve estimates for the diameter of
	(i)	an atom,
		[1]
	(ii)	a nucleus[1]
		[1]

3 The radioactive decay of a strontium (Sr) nucleus is represented in Fig. 7.1.

Fig. 7.1

(a)	State whether Fig. 7.1 represents α -decay, β -decay or γ -decay.
	[1]
(b)	One type of radioactive decay cannot be represented on Fig. 7.1. Identify this decay and explain why it cannot be represented.
	[2]
	[-]

4	The o	α- pa	article scattering experiment provided evidence for the existence of a nuclear atom.
	(a)	Stat	te what could be deduced from the fact that
		(i)	most α -particles were deviated through angles of less than 10°,
			[2]
		(ii)	a very small proportion of the $\alpha\text{-particles}$ was deviated through angles greater than $90^{\circ}.$
			[2]

(b) Fig. 7.1 shows the path AB of an α -particle as it approaches and passes by a stationary gold nucleus.

Fig. 7.1

On Fig. 7.1, draw lines (one in each case) to complete the paths of the α -particles passing by the gold nucleus when the initial direction of approach is

- (i) along line CD,
- (ii) along line EF.

5

On	e iso	tope of iron may be represented by the s	symbol
		⁵⁶ ₂₆ Fe.	
(a)	Sta	te, for one nucleus of this isotope,	
	(i)	the number of protons,	
			number =
	(ii)	the number of neutrons.	
			number =[2]
(b)	The 5.7	e nucleus of this isotope of iron may $\times 10^{-15}$ m.	be assumed to be a sphere of radius
	Cal	culate, for one such nucleus,	
	(i)	the mass,	
	(ii)	the density.	mass =kg

 $density = \dots \qquad kg \, m^{-3}$

(c)	An iron ball is found to have a density of 7900 kg m ⁻³ . By reference to your answer in (b)(ii) , suggest what can be inferred about the structure of an atom of iron.
	[2]

Αn	nucleus of an atom of francium (Fr) contains 87 protons and 133 neutrons.	
(a)	Write down the notation for this nuclide.	
	Fr	[2]
(b)	The nucleus decays by the emission of an $\alpha\text{-particle}$ to become a nucleus astatine (At).	of
	Write down a nuclear equation to represent this decay.	[2]

7	(a)	Explain what is meant by an electric field.
		[1]
	(b)	A uniform electric field is produced between two vertical metal plates AB and CD, as shown in Fig. 7.1.
		α -particle A C B A A B A A A B A
		Fig. 7.1
		The potential difference between the plates is 450V and the separation of the plates is 16 mm.
		An α -particle is accelerated from plate AB to plate CD.
		(i) On Fig. 7.1, draw lines to represent the electric field between the plates. [2]
		(ii) Calculate the electric field strength between the plates.
		electric field strength =

(iii) Calculate the work done by the electric field on the α -particle as it moves from AB to CD.

work done = J [3]

(iv)	A β-particle moves from	AB to CD. Calculate the ratio
------	-------------------------	-------------------------------

work done by the electric field on the $\alpha\text{-particle}$ work done by the electric field on the $\beta\text{-particle}.$

Show your working.

ratio =	 [1]
iatio –	 Γ.1

8 (a) An electric field is set up between two parallel metal plates in a vacuum. The deflection of α -particles as they pass between the plates is shown in Fig. 7.1.

Fig. 7.1

The electric field strength between the plates is reduced. The α -particles are replaced by β -particles. The deflection of β -particles is shown in Fig. 7.2.

Fig. 7.2

(1)	State one similarity of the electric fields shown in Fig. 7.1 and Fig. 7.2.
	[1]
(ii)	The electric field strength in Fig. 7.2 is less than that in Fig. 7.1. State two methods of reducing this electric field strength.
	1
	2[2]

(iii) By reference to the properties of α -particles and β -particles, suggest three reasons

	for the difference	es in the deflections shown in Fig. 7.1 and Fig. 7.2.	
	1		
			•••
	2		
	3		•••
			[3]
(b)	A source of α -part α -particles is repres	icles is uranium-238. The nuclear reaction for the emission ented by	of
		$^{238}_{92}U \rightarrow ^{W}_{\chi}Q + ^{Y}_{Z}\alpha.$	
	State the values of	<i>W</i>	
		X	
		Y	
		Z	[2]
(c)	A source of β -particles is representations.	cles is phosphorus-32. The nuclear reaction for the emission ented by	of
		$^{32}_{15}P \longrightarrow {}^{A}_{B}R + {}^{C}_{D}\beta.$	
	State the values of	A	
		B	
		C	
		D	[4]
		·	[1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

9 Two horizontal metal plates are separated by distance *d* in a vacuum. A potential difference *V* is applied across the plates, as shown in Fig. 6.1.

Fig. 6.1

A horizontal beam of α -particles from a radioactive source is made to pass between the plates.

(a)	State and explain the effect on the deflection of the α -particles for each of the following
	changes:

(i)	The magnitude of <i>V</i> is increased.
	[1]
(ii)	The separation <i>d</i> of the plates is decreased.
	[1]

(b)	The source of α -particles is replaced with a source of β -particles. Compare, with a reason in each case, the effect of each of the following properties or the deflections of α - and β -particles in a uniform electric field:					
	(i)	charge				
						[2]
	(ii)	mass				
						[2]
	(iii)	speed				
						[1]
(c)		e electric field gives ri ermine the ratio	ise to an accelera	tion of the α -pa	articles and the	β-particles
			acceleration of the			
				ratio =		[3]