Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Nuclear Physics

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 78 minutes

Score: /65

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	An isotope of an element is radioactive. Explain what is meant by <i>radioactive decay</i> .
		[3]
(b)	-	time t , a sample of a radioactive isotope contains N nuclei. In a short time Δt , the number of iclei that decay is ΔN .
	St	ate expressions, in terms of the symbols t , Δt , N and ΔN for
	(i)	the number of undecayed nuclei at time $(t + \Delta t)$,
		number =[1]
	(ii)	the mean activity of the sample during the time interval Δt ,
		mean activity =[1]
	(iii)	the probability of decay of a nucleus during the time interval Δt ,
		probability =[1]
	(iv)	the decay constant.
		decay constant =[1]

(c) The variation with time t of the activity A of a sample of a radioactive isotope is shown in Fig. 9.1.

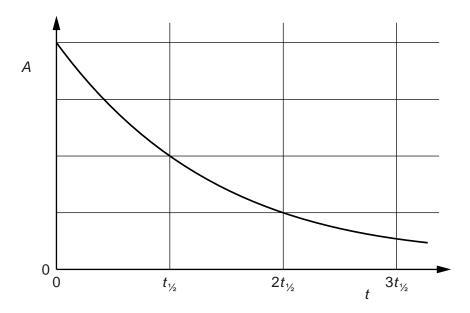


Fig. 9.1

The radioactive isotope decays to form a stable isotope S. At time t = 0, there are no nuclei of S in the sample.

On the axes of Fig. 9.2, sketch a graph to show the variation with time t of the number n of nuclei of S in the sample.

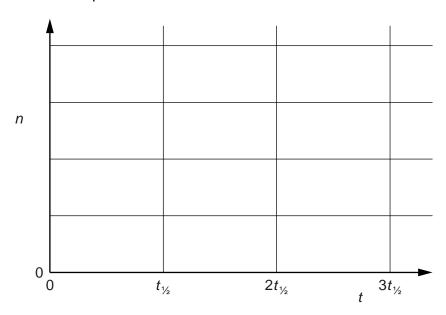


Fig. 9.2

2

		ver for a space probe is to be supplied by the energy released when plutonium-236 decays mission of $lpha$ -particles.			
		articles, each of energy 5.75 MeV, are captured and their energy is converted into electrical with an efficiency of 24%.			
(a)	a) Calculate				
	(i)	the energy, in joules, equal to 5.75 MeV,			
		energy = J [1]			
	(ii)	the number of $\alpha\text{-particles}$ per second required to generate 1.9 kW of electrical power.			
		number per second = $ s^{-1} [2] $			
(b)		th plutonium-236 nucleus, on disintegration, produces one α -particle. tonium-236 has a half-life of 2.8 years.			
	(i)	Calculate the decay constant, in s ⁻¹ , of plutonium-236.			
		decay constant = s ⁻¹ [2]			

	(ii)	i) Use your answers in (a)(ii) and (b)(i) to determine the for the generation of 1.9 kW of electrical power.	mass of plutonium-236 required
		mass =	g [4]
(c)	The	The minimum electrical power required for the space probe is	s 0.84 kW.
		Calculate the time, in years, for which the sample of pluto sufficient power.	onium-236 in (b)(ii) will provide
		time =	years [2]

3	One	e likely means by wh	nich nuclear fusion ma	v be achieved o	on a practical scale is the D-T
(a)					
	••••				
					[1]
(b) In the D-T reaction, a deuterium $\binom{2}{1}H$) nucleus fuses with a tritium $\binom{3}{1}H$) nucleus to for helium-4 $\binom{4}{2}He$) nucleus. The nuclear equation for the reaction is				a tritium $\binom{3}{1}$ H) nucleus to form a on is	
			$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He +$	$-\frac{1}{0}$ n + energy	
	Sor	me data for this reac	ction are given in Fig. 9	9.1.	
				mass/u	
			deuterium (² H)	2.01356	
			tritium (³ H)	3.01551	
			helium-4 (4He)	4.00151	
			neutron (¹ ₀ n)	1.00867	
			Fig.	9.1	
	(i)	Calculate the ener	gy, in MeV, equivalent	to 1.00 u. Expl	ain your working.
			en	ergy =	MeV [3]
	(ii)	Use data from Fig D-T reaction.	g. 9.1 and your answe	r in (i) to deter	mine the energy released in this

(iii)	Suggest why, for the D-T reaction to take place, the temperature of the deuterium a the tritium must be high.				
	[2				

Duri	ring the de-commissioning of a nuclear reactor, a mass of 2.5×10^6 kg of steel is found to be staminated with radioactive nickel-63 ($^{63}_{28}$ Ni).				
The	tota	l activity of the steel due to the nickel-63 contamination is 1.7×10 ¹⁴ Bq.			
(a)	Cald	culate the activity per unit mass of the steel.			
		activity per unit mass = Bqkg ⁻¹ [1]			
(b)	con	cial storage precautions need to be taken when the activity per unit mass due to tamination exceeds $400\mathrm{Bqkg^{-1}}$. Rel-63 is a β -emitter with a half-life of 92 years.			
		maximum energy of an emitted β-particle is 0.067 MeV.			
	(i)	Use your answer in (a) to calculate the energy, in J, released per second in a mass of 1.0 kg of steel due to the radioactive decay of the nickel.			
		energy = J [1]			
	(ii)	Use your answer in (i) to suggest, with a reason, whether the steel will be at a high temperature.			
		[1]			
	The (a)	(a) Cald (b) Specon Nick The (i)			

(iii)	Use your answer in (a) to determine the time interval before special storage precautions for the steel are not required.
	time = years [3]

5	(a)	Explain what is meant by the binding energy of a nucleus.					
							[2]
	(b)	Dat	a for the mas	sses of some particles are	aiven in	Fig. 10.1	
	(~)	Dui	a for the mac	seed of come particles are	givoiriii	. ig. 10.11	
						mass/u	
				proton		1.00728	
				neutron		1.00867	
				tritium (³ H) nucleus		3.01551	
				polonium (²¹⁰ ₈₄ Po) nucleu	JS	209.93722	
				Ein	10.1		
				rig.	10.1		
		The	energy equi	valent of 1.0 u is 930 MeV	' .		
		(i)	Calculate th	ne binding energy, in MeV	, of a tritiu	ım (³H) nucleı	JS.
				binding	g energy	=	MeV [3]
		(ii)	The total ma	ass of the senarate nucleo	one that n	nake un a nolo	onium-210 (²¹⁰ Po) nucleus is
		(")	211.70394	J.	Jiis tilat ii	iake up a poic	841 0) Hadicus is
			Calculate th	ne binding energy per nuc	leon of po	olonium-210.	

(c) Or	ne possible	fission	reaction	is
--------	-------------	---------	----------	----

$$^{235}_{92} U \, + \, ^1_0 n \, \rightarrow \, ^{141}_{56} Ba \, + \, ^{92}_{36} Kr \, + \, 3^1_0 n \, .$$

By reference to binding energy, explai energetically possible.	n, without any calculation	n, why this fission reaction is

6	The	me water becomes contaminated with radioactive iodine-131 $\binom{131}{53}$ I). a activity of the iodine-131 in 1.0 kg of this water is 460 Bq. a half-life of iodine-131 is 8.1 days.				
	(a)	Define radioactive half-life.				
	(b)	(i)				
			number =[3			
		(ii)	An amount of 1.0 mol of water has a mass of 18 g.			
			Calculate the ratio			
			number of molecules of water in 1.0 kg of water number of atoms of iodine-131 in 1.0 kg of contaminated water			
			ratio =[2			

(c)	An acceptable limit for the activity of iodine-131 in water has been set as 170 Bq kg ⁻¹ .				
	Calculate the time, in days, for the activity of the contaminated water to be reduced to this acceptable level.				
	time days [2]				
	time =days [3]				

......[2]

(b) The variation with nucleon number A of the binding energy per nucleon $B_{\rm E}$ is shown in Fig. 8.1.

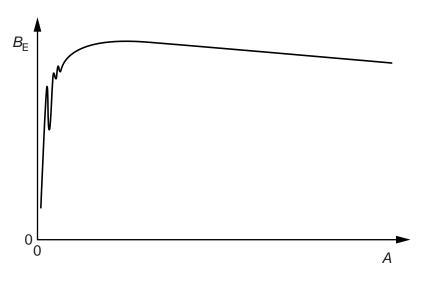


Fig. 8.1

When uranium-235 ($^{235}_{92}$ U) absorbs a slow-moving neutron, one possible nuclear reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{95}_{42}$ Mo + $^{139}_{57}$ La + $^{1}_{0}$ n + $^{1}_{-1}$ 0 β + energy.

(i) State the name of this type of nuclear reaction.

(ii) On Fig. 8.1, mark the position of

2. the molybdenum-95 (
$$^{95}_{42}$$
Mo) nucleus (label this position Mo), [1]

3. the lanthanum-139
$$\binom{139}{57}$$
La) nucleus (label this position La). [1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iii) The masses of some particles and nuclei are given in Fig. 8.2.

	mass/u
β-particle	5.5×10^{-4}
neutron	1.009
proton	1.007
uranium-235	235.123
molybdenum-95	94.945
lanthanum-139	138.955

Fig. 8.2

Calculate, for this reaction,

1. the change, in u, of the rest mass,

2. the energy released, in MeV, to three significant figures.