Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Nuclear Physics Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Particle & Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed:	81 minutes
Score:	/67
Percentage:	/100

A*	A	В	C	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 One possible nuclear fission reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n + energy.

Barium-141 ($^{141}_{56}$ Ba) and krypton-92 ($^{92}_{36}$ Kr) are both β -emitters. Barium-141 has a half-life of 18 minutes and a decay constant of $6.4 \times 10^{-4} \text{ s}^{-1}$. The half-life of krypton-92 is 3.0 seconds.

(a) State what is meant by *decay constant*.

.....[2]

- (b) A mass of 1.2g of uranium-235 undergoes this nuclear reaction in a very short time (a few nanoseconds).
 - (i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed.

(ii) Using your answer in (b)(i), calculate the total activity of the barium-141 and the krypton-92 a time of 1.0 hours after the fission reaction has taken place.

activity = Bq [4]

2 (a) State what is meant by a *nuclear fusion reaction*.

(b) One nuclear reaction that takes place in the core of the Sun is represented by the equation

 $^{2}_{1}H$ + $^{1}_{1}H$ \rightarrow $^{3}_{2}He$ + energy.

Data for the nuclei are given in Fig. 8.1.

	mass/u
proton ¹ ₁ H	1.00728
deuterium ² ₁ H	2.01410
helium ³ ₂ He	3.01605

(i) Calculate the energy, in joules, released in this reaction.

energy = J [3]

(ii) The temperature in the core of the Sun is approximately 1.6×10^7 K. Suggest why such a high temperature is necessary for this reaction to take place.

3 (a) Explain why the mass of an oparticle is less than the total mass of two individual protons and two individual neutrons.

(b) An equation for one possible nuclear reaction is

 $^4_2\mathrm{He}$ + $^{14}_7\mathrm{N}$ \rightarrow $^{17}_8\mathrm{O}$ + $^1_1\mathrm{p}.$

Data for the masses of the nuclei are given in Fig. 8.1.

		mass/u
proton	1 ₁ p	1.00728
helium-4	⁴ ₂ He	4.00260
nitrogen-14	¹⁴ 7N	14.00307
oxygen-17	¹⁷ 80	16.99913

Fig. 8.1

(i) Calculate the mass change, in u, associated with this reaction.

mass change = u [2]

(ii) Calculate the energy, in J, associated with the mass change in (i).

(iii) Suggest and explain why, for this reaction to occur, the helium-4 nucleus must have a minimum speed.

 4 When a neutron is captured by a uranium-235 nucleus, the outcome may be represented by the nuclear equation shown below.

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{95}_{42}$ Mo + $^{139}_{57}$ La + x^{1}_{0} n + 7^{0}_{-1} e

(a) (i) Use the equation to determine the value of x.

x =[1]

(ii) State the name of the particle represented by the symbol $_{-1}^{0}$ e.

.....[1]

(b) Some data for the nuclei in the reaction are given in Fig. 8.1.

		mass/u	binding energy per nucleon /MeV
uranium-235	(²³⁵ U)	235.123	
molybdenum-95	(⁹⁵ ₄₂ Mo)	94.945	8.09
lanthanum-139	(¹³⁹ La)	138.955	7.92
proton	(¹ ₁ p)	1.007	
neutron	(¹ ₀ n)	1.009	

Use data from Fig. 8.1 to

(i) determine the binding energy, in u, of a nucleus of uranium-235,

binding energy = u [3]

(ii) show that the binding energy per nucleon of a nucleus of uranium-235 is 7.18 MeV.

[3]

(c) The kinetic energy of the neutron before the reaction is negligible. Use data from (b) to calculate the total energy, in MeV, released in this reaction.

energy = MeV [2]

5 (a) (i) State what is meant by the *decay constant* of a radioactive isotope.

(ii) Show that the decay constant λ and the half-life $t_{\frac{1}{2}}$ of an isotope are related by the expression

 $\lambda t_{\frac{1}{2}} = 0.693.$

(b) In order to determine the half-life of a sample of a radioactive isotope, a student measures the count rate near to the sample, as illustrated in Fig. 9.1.

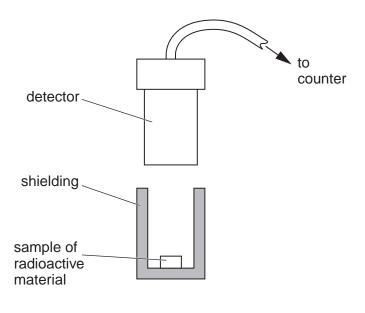


Fig. 9.1

Initially, the measured count rate is 538 per minute. After a time of 8.0 hours, the measured count rate is 228 per minute.

Use these data to estimate the half-life of the isotope.

half-life = hours [3]

(c) The accepted value of the half-life of the isotope in (b) is 5.8 hours.
The difference between this value for the half-life and that calculated in (b) cannot be explained by reference to faulty equipment.

Suggest two possible reasons for this difference.

1	 	 		
••••••	 ••••••	 		••
2				
	 	 		••
			[2	21
			L	- A.

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 6 The element strontium has at least 16 isotopes. One of these isotopes is strontium-89. This isotope has a half-life of 52 days.
 - (a) State what is meant by *isotopes*.

......[2]

(b) Calculate the probability per second of decay of a nucleus of strontium-89.

probability = $\dots s^{-1}$ [3]

(c) A laboratory prepares a strontium-89 source. The activity of this source is measured 21 days after preparation of the source and is found to be 7.4×10^6 Bq.

Determine, for the strontium-89 source at the time that it was prepared,

(i) the activity,

activity = Bq [2]

(ii) the mass of strontium-89.

- **7** The isotope phosphorus-33 $\binom{33}{15}$ P) undergoesβ-decay to form sulfur-33 $\binom{33}{16}$ S), which is stable. The half-life of phosphorus-33 is 24.8 days.
 - (a) (i) Define radioactive half-life.

•••••	•••••	•••••	•••••	••••••	 •••••	•••••	•••••	•••••	 •••••
									[0]
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	 [2]
- ·					 -			7 4	

(ii) Show that the decay constant of phosphorus-33 is $3.23 \times 10^{-7} \text{ s}^{-1}$.

[1]

(b) A pure sample of phosphorus-33 has an initial activity of 3.7×10^6 Bq.

Calculate

(i) the initial number of phosphorus-33 nuclei in the sample,

number =[2]

(ii) the number of phosphorus-33 nuclei remaining in the sample after 30 days.

(c) After 30 days, the sample in (b) will contain phosphorus-33 and sulfur-33 nuclei. Use your answers in (b) to calculate the ratio

number of phosphorus-33 nuclei after 30 days number of sulfur-33 nuclei after 30 days.

ratio =[2]

8 Radon-222 is a radioactive element having a half-life of 3.82 days.

Radon-222, when found in atmospheric air, can present a health hazard. Safety measures should be taken when the activity of radon-222 exceeds 200 Bq per cubic metre of air.

- (a) (i) Define radioactive *decay constant*.
 - (ii) Show that the decay constant of radon-222 is $2.1 \times 10^{-6} \text{ s}^{-1}$.

(b) A volume of 1.0 m^3 of atmospheric air contains 2.5×10^{25} molecules.

Calculate the ratio

 $\frac{\text{number of air molecules in } 1.0\,\text{m}^3 \text{ of atmospheric air}}{\text{number of radon-222 atoms in } 1.0\,\text{m}^3 \text{ of atmospheric air}}$

for the minimum activity of radon-222 at which safety measures should be taken.

ratio =[3]