For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Nuclear Physics

Question paper 6

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Particle & Nuclear Physics
Sub Topic	Nuclear Physics
Paper Type	Theory
Booklet	Question paper 6

Time Allowed: 87 minutes

Score: /72

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 1 The sotope Manganese-56 decays and undergoes β particle emission to form the stable isotope Iron-56. The half-life for this decay is 2.6 hours. Initially, at time t=0, a sample of Manganese-56 has a mass of 1.4 μ g and there is no Iron-56.
 - (a) Complete Fig. 7.1 to show the variation with time t of the mass of Iron-56 in the sample for time t = 0 to time t = 11 hours.

Fig. 7.1

(b) For the sample of Manganese-56, determine

(i) the initial number of Manganese-56 atoms in the sample,

number =[2]

[2]

(ii) the initial activity.

activity = Bq [3]

(c)	Determine the time at which the ratio			
	mass of Iron-56			
	mass of Manganese-56			

is equal to 9.0.

time =	 houre	[2]
ume =	 Hours	141

2	α-pa	artıcl	topes Radium-224 ($^{224}_{88}$ Ra) and Radium-226 ($^{226}_{88}$ Ra) both undergo spontaneous e decay. The energy of the α -particles emitted from Radium-224 is 5.68 MeV and dium-226, 4.78 MeV.
	(a)	(i)	State what is meant by the <i>decay constant</i> of a radioactive nucleus.
			[2]
		(ii)	Suggest, with a reason, which of the two isotopes has the larger decay constant.
	(b)	Rad	dium-224 has a half-life of 3.6 days.
	(6)		
		(i)	Calculate the decay constant of Radium-224, stating the unit in which it is measured.
			decay constant =[2]
		(ii)	Determine the activity of a sample of Radium-224 of mass 2.24 mg .
			activity – Rg. [4]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Calculate the number of half-lives that must elapse before the activity of a sample of a

radioactive isotope is reduced to one tenth of its initial value.
number of half-lives =[2]

3 Fig. 8.1 shows the variation with nucleon number of the binding energy per nucleon of a nucleus.

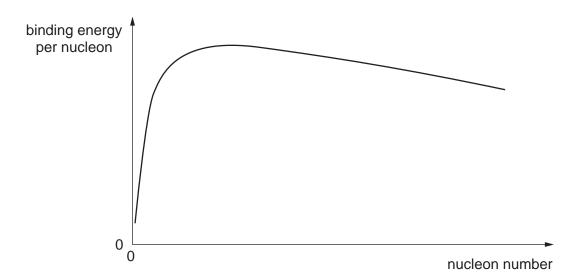


Fig. 8.1

- (a) On Fig. 8.1, mark with the letter S the position of the nucleus with the greatest stability.
- **(b)** One possible fission reaction is

$$^{235}_{92}\text{U} \ + \ ^{1}_{0}\text{n} \ \rightarrow \ ^{144}_{56}\text{Ba} \ + \ ^{90}_{36}\text{Kr} \ + \ 2^{1}_{0}\text{n}.$$

- (i) On Fig. 8.1, mark possible positions for
 - 1. the Uranium-235 ($^{235}_{92}$ U) nucleus (label this position U),

2. the Krypton-90 (
$$^{90}_{36}$$
Kr) nucleus (label this position Kr). [1]

(ii) The binding energy per nucleon of each nucleus is as follows.

$$^{235}_{92}$$
U: 1.2191×10^{-12} J $^{144}_{56}$ Ba: 1.3341×10^{-12} J $^{90}_{36}$ Kr: 1.3864×10^{-12} J

ı	ISA	these	data	tο	calculate	
١,	JOE	แเบร	uala	w	calculate	ř

	1.	the energy release in this fission reafigures),	action (give your answer to three significa	ant
	2.	the mass equivalent of this energy.	energy = J	[3]
(iii)	Sug	gest why the neutrons were not incl	mass =kg uded in your calculation in (ii) .	

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

4 Strontium-90 decays with the emission of β-particle to form Yttrium-90. The reaction is represented by the equation

$$^{90}_{38} \text{Sr} \rightarrow ^{90}_{39} \text{Y} + ^{0}_{-1} \text{e} + 0.55 \text{ MeV}.$$

The decay constant is 0.025 year ⁻¹.

[2]
[2]

- (c) At the time of purchase of a Strontium-90 source, the activity is $3.7\times10^6\,\text{Bq}.$
 - (i) Calculate, for this sample of strontium,
 - 1. the initial number of atoms,

2. the initial mass.

(ii)	Determine the activity A of the sample 5.0 years after purchase, expressing the
	answer as a fraction of the initial activity A_0 . That is, calculate the ratio $\frac{A}{A_0}$.
	7.0

ratio =[2]

5	(a)	Define the term radioactive decay constant.
		[2]
	(b)	State the relation between the activity A of a sample of a radioactive isotope containing N atoms and the decay constant λ of the isotope.
		[1]
	(c)	Radon is a radioactive gas with half-life 56 s. For health reasons, the maximum permissible level of radon in air in a building is set at 1 radon atom for every 1.5×10^{21} molecules of air. 1 mol of air in the building is contained in $0.024\mathrm{m}^3$.
		Calculate, for this building,
		(i) the number of molecules of air in 1.0 m ³ ,
		number =
		(ii) the maximum permissible number of radon atoms in 1.0 m ³ of air,
		number =

/iii)	the maximum	permissible activity	of radon	nor cubic motro	of air
	uic maximum	permissible activity	, oi iauoii	DEI CADIC IIIELIE	oi aii.

6	(ā/) ∈	e radi Stat	ioactive decay of some nuclei gives rise to the emission of $\alpha\text{-particles}.$ te
		(i)	what is meant by an α-particle, [1]
		(ii)	two properties of α -particles.
			1
			2
			[2]
	(b)		e possible nuclear reaction involves the bombardment of a stationary nitrogen-14 leus by an $lpha$ -particle to form oxygen-17 and another particle.
		(i)	Complete the nuclear equation for this reaction.
			$^{14}_{7}N +\alpha \rightarrow ^{17}_{8}O +$ [2]
		(ii)	The total mass-energy of the nitrogen-14 nucleus and the α -particle is less than that of the particles resulting from the reaction. This mass-energy difference is 1.1 MeV.
			1. Suggest how it is possible for mass-energy to be conserved in this reaction.
			[1]
			2. Calculate the speed of an α -particle having kinetic energy of 1.1 MeV.

7	(a)	State the basic assumptions of the kinetic theory of gases.
		[4]
	(b)	Use equations for the pressure of an ideal gas to deduce that the average translational kinetic energy $< E_{\rm K}>$ of a molecule of an ideal gas is given by the expression
		$\langle E_{K} \rangle = \frac{3}{2} \frac{R}{N_{A}} T$
		where R is the molar gas constant, $N_{\rm A}$ is the Avogadro constant and T is the thermodynamic temperature of the gas.
		[3]
	(c)	A deuterium nucleus ^2_1H and a proton collide. A nuclear reaction occurs, represented by the equation
		$^{2}_{1}H + ^{1}_{1}p \longrightarrow ^{3}_{2}He + \gamma$.
		(i) State and explain whether the reaction represents nuclear fission or nuclear fusion.
		[2]

(ii)	For the reaction to occur, the minimum total kinetic energy of the deuterium nucleus and the proton is $2.4 \times 10^{-14} \text{J}$. Assuming that a sample of a mixture of deuterium nuclei and protons behaves as
	an ideal gas, calculate the temperature of the sample for this reaction to occur.
	temperature = K [3]
(iii)	Suggest why the assumption made in (ii) may not be valid.
	[1]