Normal Distribution Question Paper 4

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Descrete random variables
Sub Topic	Normal Distribution
Booklet	Question Paper 4

Time Allowed:	$\mathbf{6 2}$ minutes
Score:	$/ 51$
Percentage:	$/ 100$

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

1 The times spent by people visiting a certain dentist are independent and normally distributed with a mean of 8.2 minutes. 79% of people who visit this dentist have visits lasting less than 10 minutes.
(i) Find the standard deviation of the times spent by people visiting this dentist.
(ii) Find the probability that the time spent visiting this dentist by a randomly chosen person deviates from the mean by more than 1 minute.
(iii) Find the probability that, of 6 randomly chosen people, more than 2 have visits lasting longer than 10 minutes.
(iv) Find the probability that, of 35 randomly chosen people, fewer than 16 have visits lasting less than 8.2 minutes.

2 The times for a certain car journey have a normal distribution with mean 100 minutes and standard deviation 7 minutes. Journey times are classif ed as follows:

$$
\begin{aligned}
\text { 'short' } & \text { (the shortest } 33 \% \text { of times), } \\
\text { 'long' } & \text { (the longest } 33 \% \text { of times), } \\
\text { 'standard' } & \text { (the remaining } 34 \% \text { of times). }
\end{aligned}
$$

(i) Find the probability that a randomly chosen car journey takes between 85 and 100 minutes. [3]
(ii) Find the least and greatest times for 'standard' journeys.

Measurements of wind speed on a certain island were taken over a period of one year. A box-andwhisker plot of the data obtained is displayed above, and the values of the quartiles are as shown. It is suggested that wind speed can be modelled approximately by a normal distribution with mean $\mu \mathrm{km} \mathrm{h}^{-1}$ and standard deviation $\sigma \mathrm{km} \mathrm{h}^{-1}$.
(i) Estimate the value of μ.
(ii) Estimate the value of σ.

4 The weights, X grams, of bars of soap are normally distributed with mean 125 grams and standard deviation 4.2 grams.
(i) Find the probability that a randomly chosen bar of soap weighs more than 128 grams.
(ii) Find the value of k such that $\mathrm{P}(k<X<128)=0.7465$.
(iii) Five bars of soap are chosen at random. Find the probability that more than two of the bars each weigh more than 128 grams.

The random variable X has a normal distribution with mean 4.5. It is given that $\mathrm{P}(X>5.5)=0.0465$ (see diagram).
(i) Find the standard deviation of X.
(ii) Find the probability that a random observation of X lies between 3.8 and 4.8.
(i) Give an example of a variable in real life which could be modelled by a normal distribution. [1]
(ii) The random variable X is normally distributed with mean μ and variance 21.0. Given that $\mathrm{P}(X>10.0)=0.7389$, f nd the value of μ.
(iii) If 300 observations are taken at random from the distribution in part (ii), estimate how many of these would be greater than 22.0.

