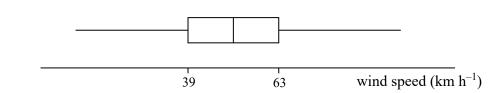
Normal Distribution Question Paper 4

Level	International A Level
Subject	Maths
Exam Board	CIE
Торіс	Descrete random variables
Sub Topic	Normal Distribution
Booklet	Question Paper 4

Time Allowed:	62 minutes		
Score:	/ 51		
Percentage:	/100		

Grade Boundaries:

A*	А	В	C	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

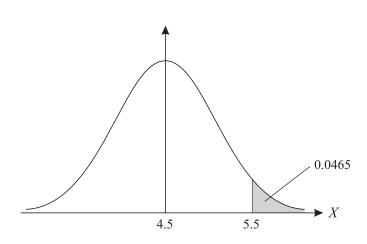

- 1 The times spent by people visiting a certain dentist are independent and normally distributed with a mean of 8.2 minutes. 79% of people who visit this dentist have visits lasting less than 10 minutes.
 - (i) Find the standard deviation of the times spent by people visiting this dentist. [3]
 - (ii) Find the probability that the time spent visiting this dentist by a randomly chosen person deviates from the mean by more than 1 minute.[3]
 - (iii) Find the probability that, of 6 randomly chosen people, more than 2 have visits lasting longer than 10 minutes. [3]
 - (iv) Find the probability that, of 35 randomly chosen people, fewer than 16 have visits lasting less than 8.2 minutes.

2 The times for a certain car journey have a normal distribution with mean 100 minutes and standard deviation 7 minutes. Journey times are classified as follows:

'short' (the shortest 33% of times),'long' (the longest 33% of times),'standard' (the remaining 34% of times).

- (i) Find the probability that a randomly chosen car journey takes between 85 and 100 minutes. [3]
- (ii) Find the least and greatest times for 'standard' journeys.

[4]



3

Measurements of wind speed on a certain island were taken over a period of one year. A box-andwhisker plot of the data obtained is displayed above, and the values of the quartiles are as shown. It is suggested that wind speed can be modelled approximately by a normal distribution with mean $\mu \text{ km h}^{-1}$ and standard deviation $\sigma \text{ km h}^{-1}$.

(i) Estimate the value of μ .	[1]
-----------------------------------	-----

- (ii) Estimate the value of σ . [3]
- 4 The weights, *X* grams, of bars of soap are normally distributed with mean 125 grams and standard deviation 4.2 grams.
 - (i) Find the probability that a randomly chosen bar of soap weighs more than 128 grams. [3]
 - (ii) Find the value of k such that P(k < X < 128) = 0.7465. [4]
 - (iii) Five bars of soap are chosen at random. Find the probability that more than two of the bars each weigh more than 128 grams.

The random variable X has a normal distribution with mean 4.5. It is given that P(X > 5.5) = 0.0465 (see diagram).

- (i) Find the standard deviation of *X*. [3]
- (ii) Find the probability that a random observation of X lies between 3.8 and 4.8. [4]

- 6 (i) Give an example of a variable in real life which could be modelled by a normal distribution. [1]
 - (ii) The random variable X is normally distributed with mean μ and variance 21.0. Given that P(X > 10.0) = 0.7389, f nd the value of μ . [3]
 - (iii) If 300 observations are taken at random from the distribution in part (ii), estimate how many of these would be greater than 22.0. [4]