For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Newton's Laws of Motion

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Dynamics
Sub Topic	Newton's Laws of Motion
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 72 minutes

Score: /60

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) State Newton's first law of motion.

	[4]

(b) A box slides down a slope, as shown in Fig. 3.1.

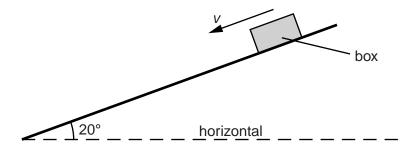


Fig. 3.1

The angle of the slope to the horizontal is 20° . The box has a mass of $65 \, \text{kg}$. The total resistive force R acting on the box is constant as it slides down the slope.

(i) State the names and directions of the other two forces acting on the box.

l		
>		
		[2]

(ii) The variation with time *t* of the velocity *v* of the box as it moves down the slope is shown in Fig. 3.2.

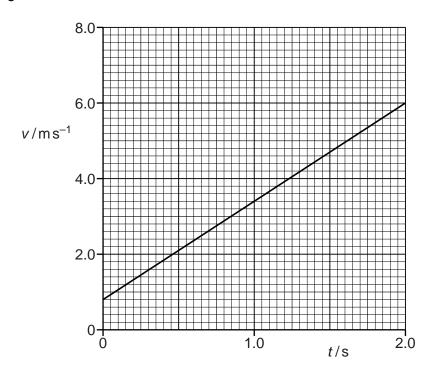


Fig. 3.2

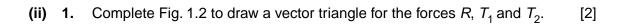
1.	Use data from Fig. 3.2 to show that the acceleration of the box is 2.6 ${\rm ms^{-2}}$.
2.	[2] Calculate the resultant force on the box.
	resultant force = N [1]
3.	Determine the resistive force <i>R</i> on the box.
	R = N [3]

2	(a) (i)	Define acceleration.
		[1
	(ii)	State Newton's first law of motion.

(b) The variation with time t of vertical speed v of a parachutist falling from an aircraft is shown in Fig. 1.1.



Fig. 1.1


(i)	Calculate the distance travelled by the parachutist in the first 3.0 s of the motion.
	distance = m [2]
(ii)	Explain the variation of the resultant force acting on the parachutist from $t = 0$ (point A) to $t = 15$ s (point C).
	[3]
(iii)	Describe the changes to the frictional force on the parachutist 1. at $t = 15$ s (point C),
	2. between $t = 15$ s (point C) and $t = 22$ s (point E).
	[1]

(iv)	The mass of the parachutist is	95 kg.	
	Calculate, for the parachutist b	between $t = 15$ s (point C) and $t = 17$ s (point D),	
	1. the average acceleration,		
	2. the average frictional force.	acceleration = ms ⁻²	[2]
		frictional force =N	[3]

3	(a)	Sta	te Newton's second law.
			[1]
	(b)	ball	all of mass $65g$ hits a wall with a velocity of $5.2\mathrm{ms^{-1}}$ perpendicular to the wall. The rebounds perpendicularly from the wall with a speed of $3.7\mathrm{ms^{-1}}$. The contact time he ball with the wall is $7.5\mathrm{ms}$.
		Cal	culate, for the ball hitting the wall,
		(i)	the change in momentum,
			change in momentum = Ns [2]
		(ii)	the magnitude of the average force.
			force = N [1]
	(c)	(i)	For the collision in (b) between the ball and the wall, state how the following apply:
			1. Newton's third law,
			[2]
			2. the law of conservation of momentum.
		(::)	Ctate with a reason whether the collision is electic as includio
		(ii)	State, with a reason, whether the collision is elastic or inelastic.

4	(a)	State	e Newton's first law.
			[1]
	(b)	A log Fig. 3	g of mass 450 kg is pulled up a slope by a wire attached to a motor, as shown in 3.1.
			log wire motor
			12°
			Fig. 3.1
			angle that the slope makes with the horizontal is 12°. The frictional force acting on og is 650 N. The log travels with constant velocity.
		(i)	With reference to the motion of the log, discuss whether the log is in equilibrium.
		(ii)	Calculate the tension in the wire.
			tension = N [3]
			State and explain whether the gain in the potential energy per unit time of the log is equal to the output power of the motor.
			rol

5	(a)	Explain the differences between the quantities distance and displacement.
		[2]
	(b)	State Newton's first law.
		[1]
	(c)	Two tugs pull a tanker at constant velocity in the direction XY, as represented in Fig. 1.1.
		tanker $X = 25.0^{\circ}$ T_1 T_2 T_2
		tug 2
		Fig. 1.1
		Tug 1 pulls the tanker with a force T_1 at 25.0° to XY. Tug 2 pulls the tanker with a force of T_2 at 15.0° to XY. The resultant force R due to the two tugs is 25.0×10^3 N in the direction XY.
		(i) By reference to the forces acting on the tanker, explain how the tanker may be described as being in equilibrium.

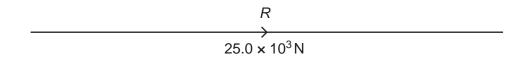


Fig. 1.2

2. Use your vector triangle in Fig. 1.2 to determine the magnitude of T_1 and of T_2 .

$$T_1 = \dots N$$
 $T_2 = \dots N$
[2]

6	(a)			e of radius R is moving through a fluid with constant speed \emph{v} . There is a frictiona acting on the sphere, which is given by the expression
				$F = 6\pi DRv$
		whe	re <i>E</i>	D depends on the fluid.
		(i)	Sho	ow that the SI base units of the quantity D are $kg m^{-1} s^{-1}$.
				[3
		(ii)	A ra	aindrop of radius 1.5 mm falls vertically in air at a velocity of $3.7 \mathrm{ms^{-1}}$. The value D for air is $6.6 \times 10^{-4} \mathrm{kgm^{-1}s^{-1}}$. The density of water is $1000 \mathrm{kgm^{-3}}$.
			Cal	culate
			1.	the magnitude of the frictional force <i>F</i> ,
				F= N [1
			2.	the acceleration of the raindrop.
				·
				acceleration = m s ⁻² [3

(b) The variation with time t of the speed v of the raindrop in **(a)** is shown in Fig. 2.1.

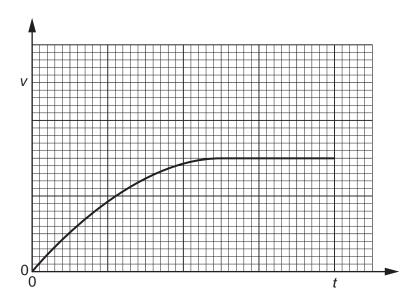


Fig. 2.1

State the variation with time of the acceleration of the raindrop.
[3]

(ii) A second raindrop has a radius that is smaller than that given in (a). On Fig. 2.1, sketch the variation of speed with time for this second raindrop. [2]