States of Matter

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	States of Matter
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 51 minutes

Score: /42

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1			ane, C_3H_8 , and butane, C_4H_{10} , are components of LiquefiedPetroleumGas(LPG)whice used as a fuel for domestic cooking and heating.
	(a)	(i)	To which class of compounds do these two hydrocarbons belong?
		(ii)	Write a balanced equation for the complete combustion of butane.
			[2]
	(b)		en propane or butane is used in cooking, the saucepan may become covered by a d black deposit.
		(i)	What is the chemical name for this black solid?
		(ii)	Write a balanced equation for its formation from butane.
			[2]
	(c)	Pro	pane and butane have different values of standard enthalpy change of combustion.
		Def	ine the term standard enthalpy change of combustion.
			[2]
	(d)	in a	25 cm ³ sample of propane gas, measured at 20 °C and 101 kPa, was completely burning. The heat produced raised the temperature of 200 g of water by 13.8 °C. Soume no heat losses occurred during this experiment.
		(i)	Use the equation $nV = nRT$ to calculate the mass of propage used

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	Use relevant data fr this experiment.	om the <i>Data Bo</i>	ooklet to calculat	e the amount of	heat released in
(iii)	Use the data above by the burning of 1	•	., .,	to calculate the e	energy produced
(a) The	hailing paints of ma	thone others	propose and by	itana ara giryan l	[5]
(e) The	boiling points of me	tnane, etnane,	propane, and bu	itane are given i	pelow.
	compound	CH ₄	CH ₃ CH ₃	CH ₃ CH ₂ CH ₃	CH ₃ (CH ₂) ₂ CH ₃
	boiling point/K	112	185	231	273
(i)	(i) Suggest an explanation for the increase in boiling points from methane to butane			ane to butane.	
(ii)	The isomer of butar Suggest an explanathe table above.				
					[4]
					[Total: 15]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2	Methai in vehi	•	onsidered to be a po	ossible alternative to fo	ssil fuels, particularly for use
		-	duced from fossil fon dioxide and hydi	_	tural waste. It can also be
			d of an equation wl on of carbon dioxide	•	nbols, the standard enthalpy
	eq	uation			
	de	finition			
	•••				
	••••				[3
	(b) Re	elevant ∆He valu	es for the reaction	that synthesises metha	anol are given in th
		·			
			compound	ΔH ^o _f /kJ mol ⁻¹	
			CO ₂ (g)	-394	
			CH ₃ OH(g) H ₂ O(g)	-201 -242	
	(i)	Use these value	ues to calculate ΔF	f ^e reaction fo	
		Include a sign	in your answer.		
		($CO_2(g) + 3H_2(g) =$	\Rightarrow CH ₃ OH(g) + H ₂ O(g	g)
				$\Delta H_{ m recent}^{m{\circ}}$	_{ion} =kJ mol ⁻
	(ii)	Suggest one	nossible environr		this reaction. Explain you
	(11)	answer.	possible environi	nental advantage of	iriis reaction. Explain you

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The synthesis of methanol is carried out at about 500 K with a pressure of between 40 and 100 atmospheres (between 4×10^6 Pa and 10×10^7 Pa) and using a catalyst. The use of such conditions will affect both the rate of reaction and the equilibrium yield.

In the spaces below, explain the effects of higher temperature, higher pressure, and the use of a catalyst on the **equilibrium yield** of methanol.

higher temperature	
effect	
explanation	
higher pressure	
effect	
explanation	
use of catalyst	
effect	
explanation	
	[6]

[Total: 14]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 The elements carbon and silicon are both in Group IV of the Periodic Table. Carbon is the second most abundant element by mass in the human body and silicon is the second most common element in the Earth's crust.

Carbon and silicon each form an oxide of general formula XO_2 . At room temperature, CO_2 is a gas while SiO_2 is a solid with a high melting point.

(a)	Briefly explain, in terms of the chemical bonds and intermolecular forces present in each compound, why CO_2 is a gas and SiO_2 is a solid at room temperature.			
	[3]			
/h\	Draw a simple diagram to show the structure of SiO. Your diagram should contain at			

(b) Draw a simple diagram to show the structure of SiO₂. Your diagram should contain at least **two** silicon atoms **and** show clearly how many bonds each atom forms.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

CO₂ does not behave as an ideal gas. State the basic assumptions of the kinetic theory as applied to an ideal gas. (c) (i) (ii) Suggest one reason why CO₂ does not behave as an ideal gas. [5] Carbon exists in a number of forms, one of which is a conductor of electricity and one of which is a non-conductor of electricity. Silicon is the main component of most semi-conductors. (d) Graphite is the form of carbon that is a conductor of electricity. Give a simple explanation for this property.[1] When carbon and silicon(IV) oxide are heated together at about 2000 °C, silicon carbide, SiC, is formed. Silicon carbide is a hard material which is widely used as an abrasive and in ceramics. **(e) (i)** Construct an equation for the reaction of carbon and silicon(IV) oxide. (ii) SiC has a similar structure to one of the common forms of carbon. Which form is this? Give a reason for your answer. form reason [2]

[Total: 13]