Enthalpy Change & Hess's Law

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Energetics
Sub-Topic	Enthalpy Change & Hess's Law
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1(a) The reaction between iodide ions and persulfate ions, $S_2O_8^{2-}$, is slow.

$$2I^{-} + S_2O_8^{2-} \longrightarrow I_2 + 2SO_4^{2-}$$

The reaction can be speeded up by adding a small amount of Fe²⁺ or Fe³⁺ ions. The following two reactions then take place.

$$2I^- + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+}$$

$$2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$$
 3

(i) What type of catalysis is occurring here?

(ii) The rates of reactions 2 and 3 are both faster than that of reaction 1. By considering the species involved in these reactions, suggest a reason for this.

.....

(iii) The following reaction pathway diagram shows the enthalpy profile of reaction 1.

Use the same axes to draw the enthalpy profiles of reaction 2 followed by reaction 3, starting reaction 2 at the same enthalpy level as reaction 1.

	e oxidation of SO_2 to SO_3 in the atmosphere is speeded up by the presence of ogen oxides.
(i)	Describe the environmental significance of this reaction.
(ii)	Describe a major source of SO ₂ in the atmosphere.
(iii)	By means of suitable equations, show how nitrogen oxides speed up this reaction.
	[4]
	[Total: 8]

2	(a)	What is meant by the term bond energy?
		[2]
	(b)	Describe and explain what is observed when a red-hot wire is plunged into separate samples of the gaseous hydrogen halides HCl and HI . How are bond energy values useful in interpreting these observations?
		[3]
	(c)	The following reaction occurs in the gas phase.
		$3F_2(g) + Cl_2(g) \longrightarrow 2ClF_3(g), \qquad \Delta H_r^{\Theta} = -328 \text{ kJ mol}^{-1}$
		Use these and other data from the $\it Data Booklet to calculate the average bond energy of the \it Cl-F bond in C\it lF_3 . [2]$
		[Total: 7]

3

The elements of Group IV all form tetrachlorides with the general formula $M{\rm C}\,l_4$.

(a)	Dra	w a diagram of a molecule of $\mathrm{SiC}l_4$ stating bond angles.	
(b)	Des	scribe and explain how the volatilities of the Group IV chlorides vary down the gro	
(c)	 The	e relative stabilities of the M^{2+} (aq) and M^{4+} (aq) ions also vary down Group IV. Use the <i>Data Booklet</i> to illustrate this observation when $M = \text{Sn}$ and $M = \text{Pb}$.	
	(ii)	Use the <i>Data Booklet</i> to predict the products formed, and write equations for reactions occurring, when $ \bullet \text{an equimolar mixture of } Sn^{2+}(aq) \text{ and } Sn^{4+}(aq) \text{ is added to } I_2(aq), $	
		• an equimolar mixture of Pb ²⁺ (aq) and Pb ⁴⁺ (aq) is added to SO ₂ (aq).	
			[4]

(d) (i)) The Sn–C l bond energy is +315 kJ mol ⁻¹ . L Booklet to calculate ΔH^{Θ} for the reaction	Use this and other values from the Data
	$MCl_2(g) + Cl_2(g) \rightarrow \Lambda$	$MCl_4(g)$
	for the following cases.	
	• <i>M</i> = Si	
	Δt	$\mathcal{H}^{\Theta} = \dots kJ \text{mol}^{-1}$
	• <i>M</i> = Sn	
	Δt	H [⊕] =kJ mol ⁻¹
(ii)	Do your results agree with the trend in relat states in (c)? Explain your answer.	ive stabilities of the +2 and +4 oxidation
		[3
		[Total: 11

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 Lead(II) chloride, PbCl₂, can be used in the manufacture of some types of coloured glass.

 ${\rm PbC}$ l_2 is only sparingly soluble in water. The $[{\rm Pb}^{2+}]$ in a saturated solution of ${\rm PbC}$ l_2 can be estimated by measuring the cell potential, $E_{\rm cell}$, of the following cell.

(a	 In the spaces below, 	, identify what the	four letters 🗗	A-D in the above	e diagram represent.

A	В
C	D
	[4

- **(b)** In a saturated solution of PbC l_2 , [PbC l_2 (aq)] = 3.5×10^{-2} mol dm⁻³.
 - (i) The E° for the Pb²⁺/Pb electrode is -0.13 V. Predict the potential of the right-hand electrode in the diagram above. Indicate this by placing a tick in the appropriate box in the table below.

electrode potential/V	place one tick only in this column
-0.17	
-0.13	
-0.09	
0.00	

Explain your answ	ver.		

	(ii)	Write an expression for the solubility product, K_{sp} , of PbC l_2 .
((iii)	Calculate the value of $K_{\rm sp}$, including units.
		$K_{sp} = \dots $ units $[5]$
(c)		behaviours of ${ m PbC}l_2$ and ${ m SnC}l_2$ towards reducing agents are similar, but their behaviours ards oxidising agents are very different.
	(i)	Illustrate this comparison by quoting and comparing relevant E° values for the two metals and their ions. Explain what the relative E° values mean in terms of the ease of oxidation or reduction of these compounds.
	(ii)	Writing a balanced molecular or ionic equation in each case, suggest a reagent to carry out each of the following reactions.
		the reduction of $PbCl_2$
		the oxidation of ${\rm SnC}\it{l}_{2}$
		[5]
		L

(d)	Write an equation to represent the lattice energy of $PbCl_2$. Show state symbols.
(ii)	Use the following data, together with appropriate data from the $\it Data\ Booklet$, to calculate a value for the lattice energy of ${\rm PbC}\it{l}_{\it{2}}$.
	electron affinity of chlorine = $-349 \mathrm{kJ}\mathrm{mol}^{-1}$ enthalpy change of atomisation of lead = $+195 \mathrm{kJ}\mathrm{mol}^{-1}$ enthalpy change of formation of PbC $l_2(s)$ = $-359 \mathrm{kJ}\mathrm{mol}^{-1}$
	lattice energy =kJ mol ⁻¹
(iii)	How might the lattice energy of $PbCl_2$ compare to that of $PbBr_2$? Explain your answer.
	[6]
	[Total: 20]

5	Nitr	oger	n oxides in the atmosphere are homogeneous catalysts in the formation of acid rain.
	(a)	What is meant by the following terms?	
		catalyst	
		homogeneous	
			[2
	(b)	(i)	State a major source of nitrogen oxides in the atmosphere, explaining how they are formed.
		(ii)	Use equations to describe the chemical role played by nitrogen oxides in the formation of acid rain.
			[5

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Use the following axes to draw a fully labelled reaction pathway diagram showing the effect of a catalyst on an exothermic reaction. Label the ΔH and $E_{\rm a}$ values.

[3]

[Total: 10]