For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Forces

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density & Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 74 minutes

Score: /61

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) The Young modulus of the metal of a wire is 1.8×10^{11} Pa. The wire is extended and the strain

produced is 8.2×10^{-4} . Calculate the stress in GPa.

-1	OD- 10	
stress =	GPa [2	1

- **(b)** An electromagnetic wave has frequency 12THz.
 - (i) Calculate the wavelength in μ m.

$$wavelength = \mu m \ [2]$$

 (ii) State the name of the region of the electromagnetic spectrum for this frequency.

(c) An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

.....[1]

Fig. 1.1

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

A force of 7.5 N towards north and a force of 2.5 N from 30° north of east act or	า B.
The mass of B is 750 g.	

(i)		Fig. 1.1, draw an arrow to show the approximate direction of the resultant of th forces.	ese [1]
(ii)	1.	Show that the magnitude of the resultant force on B is 6.6 N.	

2. Calculate the magnitude of the acceleration of B produced by this resultant force.

magnitude = $m s^{-2}$ [2]

[1]

(iii) Determine the angle between the direction of the acceleration and the direction of the 7.5 N force.

angle =° [1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 A uniform plank AB of length 5.0 m and weight 200 N is placed across a stream, as shown in Fig. 3.1.

Fig. 3.1

A man of weight 880 N stands a distance x from end A. The ground exerts a vertical force $F_{\rm A}$ on the plank at end A and a vertical force $F_{\rm B}$ on the plank at end B. As the man moves along the plank, the plank is always in equilibrium.

a)	(i)	Explain why the sum of the forces F_A and F_B is constant no matter where the man stands on the plank.
		[2]

(ii) The man stands a distance $x = 0.50 \,\mathrm{m}$ from end A. Use the principle of moments to calculate the magnitude of F_{B} .

(b) The variation with distance x of force F_A is shown in Fig. 3.2.

Fig. 3.2

On the axes of Fig. 3.2, sketch a graph to show the variation with x of force $F_{\rm B}$.

[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3	(a)	Distinguish between	mass and weight.
---	-----	---------------------	------------------

mass:		
weight:		
Weight		
	[2]	

(b) An object O of mass 4.9 kg is suspended by a rope A that is fixed at point P. The object is pulled to one side and held in equilibrium by a second rope B, as shown in Fig. 2.1.

Fig. 2.1

Rope A is at an angle θ to the horizontal and rope B is horizontal. The tension in rope A is 69 N and the tension in rope B is T.

(i) On Fig. 2.1, draw arrows to represent the directions of all the forces acting on object O. [2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) Calcula	te
--------------	----

1. the angle θ ,

2. the tension T.

4	(a)	Define centre of gravity.
		[2]

(b) A uniform rod AB is attached to a vertical wall at A. The rod is held horizontally by a string attached at B and to point C, as shown in Fig. 3.1.

Fig. 3.1

The angle between the rod and the string at B is 50° . The rod has length 1.2m and weight 8.5 N. An object O of mass M is hung from the rod at B. The tension T in the string is 30 N.

(i) Use the resolution of forces to calculate the vertical component of \mathcal{T} .

	vertical component of $T = \dots$	N [1]
(ii)	State the <i>principle of moments</i> .	
		[1]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(iii)	Use the principle of moments and take moments about A to show that the weight of the object O is 19 N.
		[3]
	(iv)	Hence determine the mass <i>M</i> of the object O.
		<i>M</i> = kg [1]
(c)	Use	the concept of equilibrium to explain why a force must act on the rod at A.
		[2]

5 (a	a) Define	power.
------	-----------	--------

(i)

(b) A cyclist travels along a horizontal road. The variation with time *t* of speed *v* is shown in Fig. 3.1.

Fig. 3.1

The cyclist maintains a constant power and after some time reaches a constant speed of $12\,\mathrm{m\,s^{-1}}$.

Describe and explain the motion of the cyclist.	
	[0]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	When the cyclist is moving at a constant speed of 12 m s ⁻¹ the resistive force is 48 N. Show that the power of the cyclist is about 600 W. Explain your working.
	[2]
(iii)	Use Fig. 3.1 to show that the acceleration of the cyclist when his speed is $8.0\mathrm{ms^{-1}}$ is about $0.5\mathrm{ms^{-2}}$.
	[2]
(iv)	The total mass of the cyclist and bicycle is 80 kg. Calculate the resistive force <i>R</i> acting on the cyclist when his speed is 8.0 m s ⁻¹ . Use the value for the acceleration given in (iii).
	R = N [3]
(v)	Use the information given in (ii) and your answer to (iv) to show that, in this situation, the resistive force R is proportional to the speed v of the cyclist.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

6 A motor drags a log of mass 452 kg up a slope by means of a cable, as shown in Fig. 2.1.

Fig. 2.1

The slope is inclined at 14.0° to the horizontal.

(a) Show that the component of the weight of the log acting down the slope is 1070 N.

(b) The log starts from rest. A constant frictional force of 525 N acts on the log. The log accelerates up the slope at $0.130\,\mathrm{m\,s^{-2}}$.

(i) Calculate the tension in the cable.

tension = N [3]

[1]

(ii) The log is initially at rest at point S. It is pulled through a distance of 10.0 m to point P.

Calculate, for the log,

1. the time taken to move from S to P,

2. the magnitude of the velocity at P.

velocity =
$$m s^{-1}$$
 [1]

(c) The cable breaks when the log reaches point P. On Fig. 2.2, sketch the variation with time *t* of the velocity *v* of the log. The graph should show *v* from the start at S until the log returns to S. [4]

Fig. 2.2