For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

# **Forces**

# Question paper 2

| Level      | International A Level      |
|------------|----------------------------|
| Subject    | Physics                    |
| Exam Board | CIE                        |
| Topic      | Forces, Density & Pressure |
| Sub Topic  | Forces                     |
| Paper Type | Theory                     |
| Booklet    | Question paper 2           |

Time Allowed: 88 minutes

Score: /73

Percentage: /100

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

1 A climber is supported by a rope on a vertical wall, as shown in Fig. 2.1.

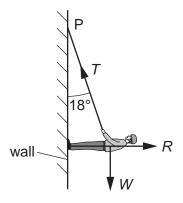



Fig. 2.1

The weight W of the climber is 520 N. The rope, of negligible weight, is attached to the climber and to a fixed point P where it makes an angle of 18° to the vertical. The reaction force R acts at right-angles to the wall.

The climber is in equilibrium.

| (a) | State the conditions necessary for the climber to be in equilibrium. |
|-----|----------------------------------------------------------------------|
|     |                                                                      |
|     |                                                                      |
|     | [2]                                                                  |

**(b)** Complete Fig. 2.2 by drawing a labelled vector triangle to represent the forces acting on the climber.



Fig. 2.2

| . N [2] |
|---------|
| . N [1] |
| eases.  |
|         |
| [1]     |
|         |

| 2 | (a) | a) State the two conditions that must be satisfied for a body         | o be in equilibrium. |
|---|-----|-----------------------------------------------------------------------|----------------------|
|   |     | 1                                                                     |                      |
|   |     |                                                                       |                      |
|   |     | 2                                                                     |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       | [2]                  |
|   | (b) | <b>b)</b> Three co-planar forces act on a body that is in equilibrium |                      |
|   |     | (i) Describe how to draw a vector triangle to represent the           | nese forces.         |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       |                      |
|   |     |                                                                       | [3]                  |
|   |     | (ii) State how the triangle confirms that the forces are in           | equilibrium.         |
|   |     |                                                                       |                      |
|   |     |                                                                       | [4]                  |

(c) A weight of 7.0 N hangs vertically by two strings AB and AC, as shown in Fig. 2.1.

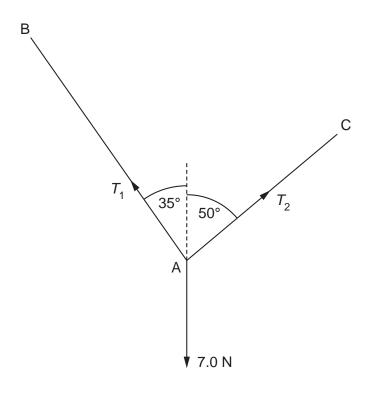



Fig. 2.1

For the weight to be in equilibrium, the tension in string AB is  $T_1$  and in string AC it is  $T_2$ .

On Fig. 2.1, draw a vector triangle to determine the magnitudes of  $T_1$  and  $T_2$ .



| <br>By reference to Fig. 2.1, suggest why the weight could not be supported with the strings AB and AC both horizontal. |
|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                         |

**3** A rod AB is hinged to a wall at A. The rod is held horizontally by means of a cord BD, attached to the rod at end B and to the wall at D, as shown in Fig. 2.1.

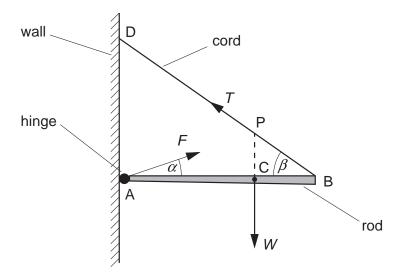



Fig. 2.1

The rod has weight W and the centre of gravity of the rod is at C. The rod is held in equilibrium by a force T in the cord and a force F produced at the hinge.

(a) Explain what is meant by

| (i)  | the centre of gravity of a body, |
|------|----------------------------------|
|      |                                  |
|      |                                  |
|      | [2]                              |
| (ii) | the equilibrium of a body.       |
|      |                                  |
|      |                                  |
|      |                                  |
|      | [2]                              |

| (b) | The   | line of action of the weight $W$ of the rod passes through the cord at point P.                                             |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------|
|     | -     | lain why, for the rod to be in equilibrium, the force ${\it F}$ produced at the hinge must also s through point P.          |
|     |       |                                                                                                                             |
|     |       |                                                                                                                             |
|     |       |                                                                                                                             |
|     |       | [2]                                                                                                                         |
| (c) |       | forces $F$ and $T$ make angles $\alpha$ and $\beta$ respectively with the rod and AC = $\frac{2}{3}$ AB, as wn in Fig. 2.1. |
|     | Writ  | te down equations, in terms of $F$ , $W$ , $T$ , $lpha$ and $eta$ , to represent                                            |
|     | (i)   | the resolution of forces horizontally,                                                                                      |
|     |       | [1]                                                                                                                         |
|     | (ii)  | the resolution of forces vertically,                                                                                        |
|     |       | [1]                                                                                                                         |
|     | (iii) | the taking of moments about A.                                                                                              |
|     |       | [1]                                                                                                                         |

4 A rod PQ is attached at P to a vertical wall, as shown in Fig. 3.1.

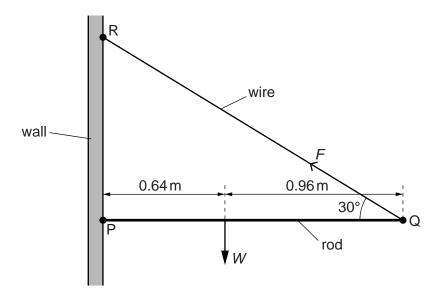



Fig. 3.1

The length of the rod is 1.60 m. The weight W of the rod acts 0.64 m from P. The rod is kept horizontal and in equilibrium by a wire attached to Q and to the wall at R. The wire provides a force F on the rod of 44 N at 30° to the horizontal.

- (a) Determine
  - (i) the vertical component of F,

(ii) the horizontal component of F.

horizontal component = ......N [1]

**(b)** By taking moments about P, determine the weight *W* of the rod.

| (c) | Explain why the wall must exert a force on the rod at P.                                                      |
|-----|---------------------------------------------------------------------------------------------------------------|
|     |                                                                                                               |
|     |                                                                                                               |
|     | [1]                                                                                                           |
| (d) | On Fig. 3.1, draw an arrow to represent the force acting on the rod at P. Label your arrow with the letter S. |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**5** (a) Force is a vector quantity. State three other vector quantities.

| 1 | <br> | <br>    |
|---|------|---------|
|   |      |         |
| 2 |      |         |
|   |      |         |
| 3 |      |         |
|   |      | <br>[2] |

**(b)** Three coplanar forces *X*, *Y* and *Z* act on an object, as shown in Fig. 3.1.

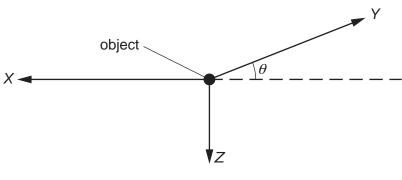



Fig. 3.1

The force Z is vertical and X is horizontal. The force Y is at an angle  $\theta$  to the horizontal. The force Z is kept constant at 70 N.

In an experiment, the magnitude of force *X* is varied. The magnitude and direction of force *Y* are adjusted so that the object remains in equilibrium.

Fig. 3.2 shows the variation of the magnitude of force Y with the magnitude of force X.

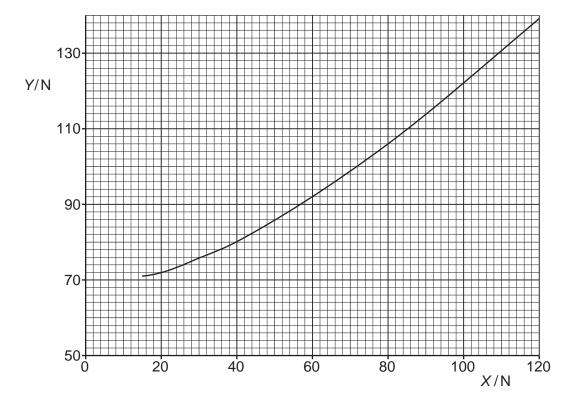



Fig. 3.2

|     | (i)       | Us     | e Fi | g. 3.2        | to est  | imate          | the r  | nagnit     | ude of  | Y for | X = 0  |         |          |         |        |           |       |
|-----|-----------|--------|------|---------------|---------|----------------|--------|------------|---------|-------|--------|---------|----------|---------|--------|-----------|-------|
|     |           |        |      |               |         |                |        |            |         | Y=    |        |         |          |         |        |           | N [1] |
|     | (ii)      | Sta    |      |               |         |                |        |            | X = 0.  |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     | (iii)     | The of | e ma | agnitu        | de of   | X is ir        | ncrea  | sed to     | 160 N.  | Use   | resolu | ution o | of force | es to d | alcula | ate the   | value |
|     |           | 1.     | ar   | ngle $\theta$ | ı       |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         | θ=    |        |         |          |         |        |           | .°[2] |
|     |           | 2.     | th   | e mag         | gnitude | e of fo        | rce Y  | <b>′</b> . |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         | Y=    |        |         |          |         |        |           | N [2] |
| (c) | The<br>θ= |        | gle  | heta dec      | reases  | s as $\lambda$ | √ incr | eases      | . Expla | in wh | y the  | objec   | t canr   | not be  | in ed  | quilibriu | m for |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |
|     |           |        |      |               |         |                |        |            |         |       |        |         |          |         |        |           |       |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

| 6 | (a)   | Define the <i>torque</i> of a couple.                                |
|---|-------|----------------------------------------------------------------------|
|   |       |                                                                      |
|   | (I- \ | [2]                                                                  |
|   | (a)   | A uniform rod of length 1.5 m and weight 2.4 N is shown in Fig. 2.1. |

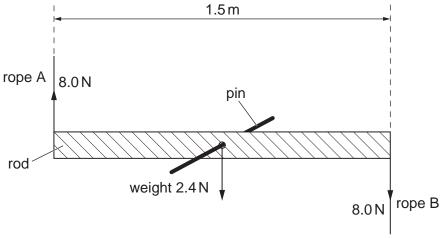



Fig. 2.1

The rod is supported on a pin passing through a hole in its centre. Ropes A and B provide equal and opposite forces of 8.0 N.

(i) Calculate the torque on the rod produced by ropes A and B.

|      | torque = Nm [1]                                      |
|------|------------------------------------------------------|
| (ii) | Discuss, briefly, whether the rod is in equilibrium. |
|      |                                                      |
|      |                                                      |
|      |                                                      |
|      | [2]                                                  |

(c) The rod in (b) is removed from the pin and supported by ropes A and B, as shown in Fig. 2.2.

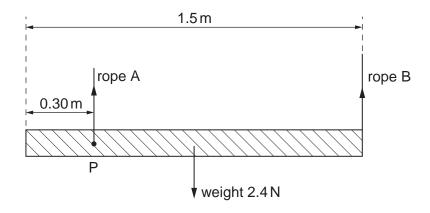



Fig. 2.2

Rope A is now at point P 0.30 m from one end of the rod and rope B is at the other end.

(i) Calculate the tension in rope B.

(ii) Calculate the tension in rope A.

### For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

| 7 | (a) | Explain what is meant by centre of gravity. |
|---|-----|---------------------------------------------|
|   |     | [2]                                         |
|   | (b) | Define <i>moment</i> of a force.            |
|   |     |                                             |
|   |     |                                             |

(c) A student is being weighed. The student, of weight W, stands 0.30 m from end A of a uniform plank AB, as shown in Fig. 3.1.

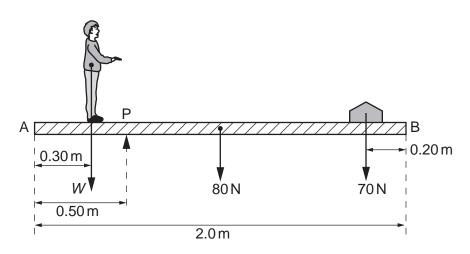



Fig. 3.1 (not to scale)

(i)

The plank has weight 80 N and length 2.0 m. A pivot P supports the plank and is 0.50 m from end A.

A weight of 70 N is moved to balance the weight of the student. The plank is in equilibrium when the weight is 0.20 m from end B.

| State the two conditions necessary for the plank to be in equilibrium. |         |
|------------------------------------------------------------------------|---------|
| 1                                                                      |         |
|                                                                        |         |
|                                                                        |         |
| 2                                                                      |         |
|                                                                        | <br>[2] |

| (ii)  | Determine the weight <i>W</i> of the student.                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       | <i>W</i> = N [3]                                                                                                                                                                                                             |
| (iii) | If only the 70 N weight is moved, there is a maximum weight of student that can be determined using the arrangement shown in Fig. 3.1. State and explain <b>one</b> change that can be made to increase this maximum weight. |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |
|       | [2]                                                                                                                                                                                                                          |
|       |                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                              |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

8 A girl G is riding a bicycle at a constant velocity of  $3.5 \,\mathrm{m\,s^{-1}}$ . At time t = 0, she passes a boy B sitting on a bicycle that is stationary, as illustrated in Fig. 2.1.



Fig. 2.1

At time t = 0, the boy sets off to catch up with the girl. He accelerates uniformly from time t = 0 until he reaches a speed of  $5.6 \,\mathrm{m\,s^{-1}}$  in a time of  $5.0 \,\mathrm{s}$ . He then continues at a constant speed of  $5.6 \,\mathrm{m\,s^{-1}}$ . At time t = T, the boy catches up with the girl. T is measured in seconds.

(a) State, in terms of T, the distance moved by the girl before the boy catches up with her.

- (b) For the boy, determine
  - (i) the distance moved during his acceleration,

(ii) the distance moved during the time that he is moving at constant speed. Give your answer in terms of *T*.

| (c) |      | e your answers in <b>(a)</b> and <b>(b)</b> to determine the girl. | ne time    | T taken ∶ | for the bo | y to catch  | up   |
|-----|------|--------------------------------------------------------------------|------------|-----------|------------|-------------|------|
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    | _          |           |            |             |      |
|     |      |                                                                    | <i>I</i> = |           |            | s           | [2]  |
| (d) | The  | boy and the bicycle have a combined mass                           | of 67 kg   |           |            |             |      |
|     | (i)  | Calculate the force required to cause the ac                       | celeration | on of the | boy.       |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            | N           |      |
|     | (ii) | At a speed of 4.5 m s <sup>-1</sup> , the total resistive 23 N.    | force ac   | ting on   | the boy a  | and bicycle | e is |
|     |      | Determine the output power of the boy's leg                        | s at this  | speed.    |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |
|     |      |                                                                    |            |           |            |             |      |