For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

## **Deformation of Solids**

### Question paper 2

| Level      | International A Level |
|------------|-----------------------|
| Subject    | Physics               |
| Exam Board | CIE                   |
| Topic      | Deformation of Solids |
| Sub Topic  |                       |
| Paper Type | Theory                |
| Booklet    | Question paper 2      |

Time Allowed: 57 minutes

Score: /47

Percentage: /100

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1 | (a) | Explain what is meant by plastic deformation.                                                                                                                                                                                          |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (b) | A copper wire of uniform cross-sectional area $1.54 \times 10^{-6}  \text{m}^2$ and length $1.75  \text{m}$ has a breaking stress of $2.20 \times 10^8  \text{Pa}$ . The Young modulus of copper is $1.20 \times 10^{11}  \text{Pa}$ . |
|   |     | (i) Calculate the breaking force of the wire.                                                                                                                                                                                          |
|   |     |                                                                                                                                                                                                                                        |
|   |     |                                                                                                                                                                                                                                        |
|   |     | breaking force =                                                                                                                                                                                                                       |
|   |     | (ii) A stress of $9.0 \times 10^7$ Pa is applied to the wire. Calculate the extension.                                                                                                                                                 |
|   |     |                                                                                                                                                                                                                                        |
|   |     | extension = m [2]                                                                                                                                                                                                                      |
|   | (c) | Explain why it is not appropriate to use the Young modulus to determine the extension when the breaking force is applied.                                                                                                              |
|   |     | [1]                                                                                                                                                                                                                                    |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**2 (a)** With reference to the arrangement of atoms, distinguish between metals, polymers and amorphous solids.

| tals:           |         |
|-----------------|---------|
|                 |         |
| ymers:          |         |
|                 |         |
| orphous solids: |         |
|                 | <br>[3] |

**(b)** On Fig. 3.1, sketch the variation with extension *x* of force *F* to distinguish between a metal and a polymer.



Fig. 3.1

[2]

| 3 | (a) | State Hooke's law.                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|   |     | [1]                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|   | (b) | A spring is attached to a support and hangs vertically, as shown in Fig. 6.1. An object M of mass 0.41 kg is attached to the lower end of the spring. The spring extends until M is at rest at R. |  |  |  |  |  |  |  |  |  |
|   |     | spring  R                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   |     | Fig. 6.1                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|   |     | The spring constant of the spring is $25\mathrm{Nm^{-1}}$ . Show that the extension of the spring is about $0.16\mathrm{m}$ .                                                                     |  |  |  |  |  |  |  |  |  |
|   |     |                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|   |     | [2]                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|   | (c) | The object M in Fig. 6.1 is pulled down a further 0.060 m to S and is then released. For M, just as it is released,                                                                               |  |  |  |  |  |  |  |  |  |
|   |     | (i) state the forces acting on M,                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|   |     | (ii) calculate the acceleration of M.                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|   |     |                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |

| (d) | Describe and explain the energy changes from the time the object M in Fig. 6.1 is released to the time it first returns to R. |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                               |
|     |                                                                                                                               |
|     |                                                                                                                               |
|     | [2]                                                                                                                           |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 One end of a spring is fixed to a support. A mass is attached to the other end of the spring. The arrangement is shown in Fig. 3.1.



Fig. 3.1

| (a) | The mass is in equilibrium. Explain, by reference to the forces acting on the mass, w | vhat |
|-----|---------------------------------------------------------------------------------------|------|
|     | is meant by equilibrium.                                                              |      |

.....

.....[2

**(b)** The mass is pulled down and then released at time t = 0. The mass oscillates up and down. The variation with t of the displacement of the mass d is shown in Fig. 3.2.



Fig. 3.2

Use Fig. 3.2 to state a time, one in each case, when

(i) the mass is at maximum speed,

(ii) the elastic potential energy stored in the spring is a maximum,

(iii) the mass is in equilibrium.

(c) The arrangement shown in Fig. 3.3 is used to determine the length l of a spring when different masses M are attached to the spring.



Fig. 3.3

The variation with mass M of l is shown in Fig. 3.4.



Fig. 3.4

| (i)   | State and explain whether the spring obeys Hooke's law.                                     |
|-------|---------------------------------------------------------------------------------------------|
|       | [2]                                                                                         |
| (ii)  | Show that the force constant of the spring is 26 N m <sup>-1</sup> .                        |
|       |                                                                                             |
|       |                                                                                             |
| (iii) | [2] A mass of 0.40 kg is attached to the spring. Calculate the energy stored in the spring. |
|       |                                                                                             |
|       |                                                                                             |
|       | energy = J [3]                                                                              |
|       |                                                                                             |

|      |                                 |             | rom a fixed poin<br>n in Fig. 5.1. | t by a steel | wire. The v  | ariation with | ı extensic |
|------|---------------------------------|-------------|------------------------------------|--------------|--------------|---------------|------------|
| F/N  | 6.0<br>5.0<br>4.0<br>3.0<br>2.0 |             | 0.10                               |              | 0.20         |               | 0.30       |
|      |                                 |             | Fig. 5                             | 5.1          |              | x/mm          |            |
| (i)  | required  1                     | in order to |                                    | oung modul   | us of steel. |               |            |
| (ii) |                                 |             | uantities you list                 |              |              |               |            |

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

| (iii) | A load of 3.0 N is applied to the wire. the wire. | Use Fig. 5.1 to calculate the energy stored in |
|-------|---------------------------------------------------|------------------------------------------------|
|       |                                                   |                                                |
|       |                                                   |                                                |
|       |                                                   |                                                |
|       |                                                   |                                                |
|       |                                                   | energy = J [2]                                 |

(c) A copper wire has the same original dimensions as the steel wire. The Young modulus for steel is  $2.2 \times 10^{11} \, \text{N} \, \text{m}^{-2}$  and for copper is  $1.1 \times 10^{11} \, \text{N} \, \text{m}^{-2}$ .

On Fig. 5.1, sketch the variation with x of F for the copper wire for extensions up to 0.25 mm. The copper wire is not extended beyond its limit of proportionality. [2]

| 6 | (a) | State Hooke's law.                                                                               |
|---|-----|--------------------------------------------------------------------------------------------------|
|   |     |                                                                                                  |
|   |     |                                                                                                  |
|   |     | [1]                                                                                              |
|   | (b) | The variation with extension <i>x</i> of the force <i>F</i> for a spring A is shown in Fig. 6.1. |



Fig. 6.1

The point L on the graph is the elastic limit of the spring.

| (i)  | Describe the meaning of <i>elastic limit</i> .    |
|------|---------------------------------------------------|
|      |                                                   |
|      |                                                   |
|      | [1                                                |
| (ii) | Calculate the spring constant $k_A$ for spring A. |

$$k_{A} = \dots Nm^{-1} [1]$$

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

| ( | iii) | Calculate the work | done in extendina | the spring w | ith a force of 6.4 N. |
|---|------|--------------------|-------------------|--------------|-----------------------|
|   |      |                    |                   |              |                       |

(c) A second spring B of spring constant  $2k_{\rm A}$  is now joined to spring A, as shown in Fig. 6.2.



Fig. 6.2

A force of 6.4N extends the combination of springs.

For the combination of springs, calculate

(i) the total extension,

(ii) the spring constant.