Movement and position
 Mark Scheme 1

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Forces and motion
Sub-Topic	Movement and position
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{6 2}$ minutes
Score:	$/ 51$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	775%	70%	60%	55%	50%	$<50 \%$

Question number	Answer	Notes	Marks
1(a)	B - the horizontal part of the line;		1
(b)	A - the area under the line;		1
(c)	B - the distance moved divided by the time taken;		1

Total 3 marks

Question number	Answer	Notes	Marks
2	Any 5 of 1. determine / measure distance; 2. determine / measure time; 3. Appropriate measuring instrument for distance OR time; 4. Use a suitable distance / count laps (of known length); 5. repeat experiment/calculate average; 6. Speed $=$ distance $/$ time OR finding the gradient ; 7. Suitable experimental precaution, e.g. reaction time considered, consistent height on track, time from a predetermined consistent point;	Allow idea of published track length use of split times e.g. 1 lap or circuit Ignore 'human error'	5
		Total	5

Question number	Answer	Notes	Marks
(b)	Any three from 1. Stopping distance affected by speed or mass; 2. For faster plane, stopping distance greater/ runway too short ; 3. for heavier plane stopping distance greater/ runway too short; 4. Attempt to calculate stopping distance from graph; 5. Data shows most/all of runway already used;	ignore time $=500 / 40$ Allow a momentum argument for MP1, 2, 3	3
		Total	10

Question number	Answer	Notes	Marks
5	Any FOUR of Reaction time of driver (inc comment on drink/drugs / driver paying attention / driver distracted /driver tired);	ACCEPT 'thinking distance / time' as an alternative to these points IGNORE 'condition of driver'	
	Condition of car's brakes/force applied to brakes; Condition of car's tyres; Condition of road surface (inc ice/water/mud /friction ideas); ACCEPT 'braking distance (of the car)' as an alternative to these three 'condition' points IGNORE 'condition of car'		
Stopping distance of car; Velocity / speed / behaviour of rabbit (across road); Distance of rabbit from car; Visibility factor (e.g. fog / dirty windscreen); ALLOW MAXIMUM of TWO from these Kinetic energy of car; Momentum of car; Velocity / speed of car; Mass / weight of car / number of passengers; i.e. momentum of car and velocity of car and mass of car only scores two of the marks available			

Questio n number	Answer	Notes	Marks
6 (a) (i) (ii)	6.1 (m); any two from:- MP1. (on distance-time graph,) flat line means zero speed / eq MP2. (so) count when slope is zero; MP3. 7 (times);	allow flat or horizontal for zero slope	1
(b) (i) (ii)	```(average) speed = (total) distance moved (total) time taken Substitution; Calculation; Matching unit; e.g. Average speed = \frac{6.1}{(7x 60)} =0.0145 = 0.015 m/s```	allow defined symbols ignore 'triangles' allow both substitution and calculation marks for a correct value without working allow 6.1, or ecf for distance 7 for time allow alternatives with compatible unit, e.g. $1.45 \mathrm{~cm} / \mathrm{s}$ OR $1.5 \mathrm{~cm} / \mathrm{s}$ $14.5 \mathrm{~mm} / \mathrm{s}$ OR $15 \mathrm{~mm} / \mathrm{s}$ $0.87 \mathrm{~m} /$ minutes $87 \mathrm{~cm} /$ minute $870 \mathrm{~mm} /$ minute Allow for 1 mark $6 / 7$ or 0.9	1

Question number	Answer	Notes	Marks
7 (a) (i)	Any two of - MP1. arrow downwards, labelled weight; MP2. arrow upwards, labelled reaction/ contact force; MP3. arrow to the left, labelled air friction / air resistance / drag; MP4. arrow along the surface, labelled friction; e.g. Any three of - MP1. friction/resistance / drag (acts); MP2. (there is an) unbalanced force; MP3. (hence) ball decelerates; MP4. reference to $f_{(R)}=m a ;$ MP5. (kinetic) energy dissipates / fate of energy discussed;	In MP1, 2 \& 3, position of arrows unimportant, but direction must match label Allow initial letters as shown in example ignore - gravity allow - mg - force of gravity - arrow drawn on left or right Accept arrow in either direction for MP4 $\mathrm{N}=$ normal contact force ignore stem allow - resistive forces > \{forward/driving\} force - there is a resultant force - its momentum changes - accelerates	2

(b) (i)	idea that friction is (much) less in the air;	allow \bullet RA \bullet no contact / ground friction less energy lost	1

Question number	Answer	Notes	Marks
$\begin{array}{\|lll} \hline 7 & \text { (c) } & \text { (i) } \\ & & \text { (ii) } \end{array}$	$\begin{aligned} & \hline \mathrm{KE}=1 / 2 \mathrm{mv}^{2} ; \\ & \text { Conversion to } \mathrm{kg} ; \\ & \text { Substitution into correct } \\ & \text { equation; } \\ & \text { Rearrangement; } \\ & \text { Evaluation; } \\ & \text { e.g. } 45 \mathrm{~g}=0.045 \mathrm{~kg} \quad \text { (or } 1 \\ & \mathrm{~kg}=1000 \mathrm{~g} \mathrm{etc}) \\ & 36=1 / 2 \times 0.045 \times \mathrm{v}^{2} \\ & \mathrm{v}^{2}=2 \times 36 \quad(=1600) \\ & 40(\mathrm{~m} / \mathrm{s}) \end{aligned}$	Words or symbols allow - 1000 seen - steps in any order - correct answer with no working for full marks - up to 3 marks for use of $45 \mathrm{~kg} \rightarrow 1.26$ (m / s)working must be seen	1 4
(iii)	Any one of- - (Hit the ball transferring) more energy; - (Hit the ball with) more velocity; - (Hit the ball with) more speed; - (Hit the ball with) more force;	I gnore - harder - power Allow - momentum - keep contact for a larger part of the swing - go to a place where g is less (e.g. on the moon) - hit ball at a steeper angle / vertically (e.g. use a more lofted club)	1

