Atoms, Molecules & Stoichiometry

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Atoms, Molecules & Stoichiometry
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	69 minutes
Score:	/57
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	(a)			protons	electrons	neutrons		1
			¹⁴ C ^{2–}	6	8	8		1
	(b)		$\begin{array}{ll} CCl_4: & \text{no reaction} \\ GeCl_4 & \text{and } SnCl_4: \text{ for } \textbf{each} \text{ steamy fumes evolved } \textit{or} \text{ white solid produced} \\ GeCl_4 + 2H_2O \longrightarrow GeO_2 + 4HCl \\ SnCl_4 + 2H_2O \rightarrow SnO_2 + 4HCl \end{array}$					1 1 1 1
	(c)		Ge/Sn use d–orbitals or Ge/Sn have low lying d orbitals or carbon cannot expand its octet or carbon cannot accommodate more than 4 bonded pairs					
	(d)		Sn ⁴⁺ /Sn ²⁺	= +0.15V	and Pb ⁴⁺ /	Pb ²⁺ = +1.0	69 V and $Cl_2/Cl^- = + 1.36$ V	1
			Sn^{2+} is oxidised by Cl_2 because its E° is less positive/more negative or Sn^{2+} is a good reducing agent due to its smaller E value than Cl_2 ora or Pb^{4+} is a stronger oxidising agent than Cl_2 so Pb^{2+} with Cl_2 reaction is not feasible or Sn^{4+} is a weaker oxidising agent than Cl_2 so Sn^{2+} with Cl_2 reaction is feasible					1
			$SnCl_{2} + Cl_{2} \longrightarrow SnCl_{4}$ or $Sn^{2+} + Cl_{2} \longrightarrow Sn^{4+} + 2Cl^{-}$ or $SnCl_{2} + Cl_{2} + 2H_{2}O \longrightarrow SnO_{2} + 4HCl$					1
	(e) (i	i)	F = Le					1
	(ii	i)	moles of C	D ₂ (g) = 130	/24000 =	5.417 x 10	⁻³ mol	1
			moles of electrons needed = $4 \times 5.417 \times 10^{-3}$ or 2.17×10^{-2} mol					
			no. of coulombs passed = 1.2 x 30 x 60 <i>or</i> 2160 C					1
			no. of elec	trons pass	ed = 2160	/1.6 x 10 ^{-*}	¹⁹ <i>or</i> 1.35 x 10 ²²	1
			no. of elec	trons per r	nole = 1.3	5 x 10 ²² /2.	17 x 10 ⁻² = 6.2 x 10²³ (mol ⁻¹)	1
								Total: 15]

2	(a (i)	$n(H_2SO_4) = \frac{25.0 \times 1.00}{1000} = 0.025 \text{ mol}$	(1)
	(ii)	$n(\text{NaOH}) = \frac{16.2 \times 2.00}{1000} = 0.0324 \text{ mol}$	(1)
	(iii)	$n(H_2SO_4)$ reacting with NaOH = $\frac{0.0324}{2} = 0.0162$ mol	(1)
	(iv) (v) (vi) (vii) (viii)	$n(H_2SO_4)$ reacting with NH ₃ = 0.025 - 0.0162 = 0.0088 mol $n(NH_3)$ reacting with H ₂ SO ₄ = 2 x 0.0088 = 0.0176 mol $n(NaNO_3)$ reacting = $n(NH_3)$ produced = 0.0176 mol mass of NaNO ₃ that reacted = 0.0176 x 85 = 1.496 g % of NaNO ₃ = $\frac{1.496 \times 100}{1.64}$ = 91.2195122 = 91.2	(1) (1) (1) (1)
		give one mark for the correct expression give one mark for answer given as 91.2 – i.e to 3 sig. fig. allow ecf where appropriate	(1) (1) [9]

[1]

[Total: 10]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

3 (a (i) mass of C =
$$\frac{12 \times 1.32}{44}$$
 = 0.36g (1)

$$n(C) = \frac{0.36}{12} = 0.03 \tag{1}$$

(ii) mass of H =
$$\frac{2 \times 0.54}{18}$$
 = 0.06 g (1)

$$n(H) = \frac{0.06}{1} = 0.06 \tag{1}$$

(iii) yes because 0.03 mol of C are combined with 0.06 mol of H or
 C : H ratio is 1 : 2 or
 empirical formula is CH₂

(b) (i)
$$C: H: O = \frac{64.86}{12}: \frac{13.50}{1}: \frac{21.64}{16}$$
 (1)

= 5.41: 13.50 : 1.35

gives
$$C_4 H_{10} O$$
 (1)

(ii)

correct compound **and** correct chiral C* correct mirror object/ mirror image relationship in 3D

(iii)

$$\begin{array}{|c|c|c|c|c|} \hline H & OH \\ I \\ CH_3CH_2CH_2CH_2OH & CH_3CCH_2OH \\ I \\ CH_3 & CH_3 \\ \hline CH_3 \\ \hline \end{array}$$

[Total: 12]

[7]

(1)

(1)

(1)

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Question	on Mark Scheme					
4 (a)	sub-atomic particle	relative mass	relative charge			
	neutron		0	[1]		
	electron	1/1836	_	[1]		
	proton		+	[1]	[3]	
(b) (i)	RAM = mean/average relative to 1/12 atom of ¹² C is (an [1]				
	isotope = atoms with number wit neutrons/r	proton [1]	[3]			
(ii)	$(0.89 \times 74) + (9.37 \times 76)$	×82) [1]				
	= 79.04 (2 d.p.) AND S	[1]	[2]			
(c) (i)	Te C <i>l</i>					
	$\frac{47.4}{128} \qquad \frac{52.6}{35.5}$			[1]		
	$\frac{0.370}{0.370} \frac{1.48}{0.370}$					
	1 4 so	EF = TeC <i>l</i> ₄		[1]		
	En	npirical Formula Mass :	= 270 so MF = Te	eC4 [1]	[3]	
(c) (ii)	Covalent AND simple/	[1]				
	low melting point/read	[1]	[2]			
(iii)	$\begin{array}{c} TeC \mathit{l}_4 + 3H_2O \to H_2Te\\ \textbf{OR} \ TeC \mathit{l}_4 + 2H_2O \to T \end{array}$	[1]	[1]			
(d) (i)	Yellow/orange flame White fumes/solid Yellow/green gas disa	[1] [1] [1]	[max 2]			

(ii)	NaC <i>l</i> giant/lattice AND ionic SiC <i>l</i> ₄ simple/molecular AND covalent	[1] [1]	
	For NaCl large difference in electronegativity (of sodium/Na and chlorine/ Cl/Cl_2) (indicates electron transfer/ions)	[1]	
	For SiC4 smaller difference (indicates sharing/covalency) with (weak) van der Waals'/IM forces (between molecules) ora		
		[1]	[4]
			[20]