Atoms, Molecules & Stoichiometry

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Atoms, Molecules & Stoichiometry
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	77 minutes
Score:	/64
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

$$n(C) = \frac{0.096}{12} = 0.008 \tag{1}$$

(ii) mass of H =
$$\frac{2 \times 0.144}{18}$$
 = 0.016g (1)

$$n(H) = \frac{0.016}{1} = 0.016$$
(1)

(iii) mass of oxygen =
$$0.240 - (0.096 + 0.016) = 0.128g$$
 (1)

$$n(O) = \frac{0.128}{16} = 0.008 \tag{1}$$

(b)
$$C : H : O = 0.008: 0.016 : 0.008 = 1:2:1$$

allow $C : H : O = 0.096 : 0.016 : 0.128 = 1:2:1$
gives $C H_2O$ (1 [1]

(c) (i)
$$M_{\rm r} = mRT = \frac{0.148 \times 8.31 \times 333}{pV}$$
 (1)
 $1.01 \times 10^5 \times 67.7 \times 10^{-6}$

(ii)
$$C_2H_4O_2$$
 (1) [3]

(d)
$$CH_3CO_2H$$
 (1)
 HCO_2CH_3 (1)

(e) the only products of the reaction are the two oxides
$$H_2O$$
 and CO_2 and copper (1) [1]

[Total: 13]

(1)

- 2 (a) Cr^{3+} : 1 ${}^{2}2s^{2}2p^{6}$ 3s² 3p⁶ 3d³ Mn²⁺: 1 ${}^{2}2s^{2}2p^{6}$ 3s² 3p⁶ 3d⁵
 - (b) (i) Any two from
 - H^+ is on the oxidant/L.H. side of each of the $\frac{1}{2}$ -equations, or H^+ is a reactant
 - (increasing [H⁺]) will make E^e more positive
 - (increasing [H⁺]) will drive the reaction over to the R.H./reductant side *or* forward direction

[1] +

(ii) KMnO4:	: Purple/violet to colourless (allow <u>very</u> pale pink)	[1]
K ₂ Cr ₂ O ₇	7 Orange to green	[1]
		[4]

(c) (i) $MnO_2 + SO_2 \longrightarrow MnSO_4 (or Mn^{2+} + SO_4^{2-})$ [1]

manganese changes/is reduced from +4 to +2[1]sulfur changes/is oxidised from +4 to +6[1]

(ii) No effect, because H⁺ does not appear in the overall equation *or* its effect on the MnO₂/Mn²⁺ change is cancelled out by its effect on the SO₂/SO₄²⁻ change [1]
 [4]

(d) (i) $MnO_2 + 4H^+ + Sn^{2+} \longrightarrow Mn^{2+} + 2H_2O + Sn^{4+}$ [1]

(ii) $n(MnO_4^-) = 0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$ [1] $n(Sn^{2+}) = 3.62 \times 10^{-4} \times 5/2 = 9.05 \times 10^{-4} \text{ mol}$ [1] $n(Sn^{2+})$ that reacted with $MnO_2 = (20 - 9.05) \times 10^{-4} = 1.095 \times 10^{-3} \text{ mol}$ [1] reaction is 1:1, so this is also $n(MnO_2)$ mass of $MnO_2 = 1.095 \times 10^{-3} \times (54.9+16+16) = 0.0952 \text{ g}$ [1] \Rightarrow **95% - 96%;** 2 or more s.f. [1]

[Total: 16]

[6]

[1] [1] **[2]** 3 (a the actual number of atoms of each element present (1)

in one molecule of a compound (1)

(b)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2 O$$

 $x CO_2(1)$
 $\frac{y}{2} H_2 O(1)$
[2]

- (c) ($oxygen/O_2(1)$
 - (ii) carbon dioxide/CO₂(1)
 - (iii) 10 cm³ (1)

(iv)
$$20 \text{ cm}^3(1)$$

(d) $C_xH_y + (x + \frac{y}{4})O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$ 10 cm³ 20 cm³ 10 cm³ 1 mol of C_xH_y gives 1 mol of CO_2 whence x = 1 (1) 1 mol of C_xH_y reacts with 2 mol of O_2 whence $(x + \frac{y}{4}) = 2$ and y = 4 (1) molecular formula is CH₄ (1)

[3]

[Total: 11]

[4]

[2]

4	(a	Al $1s^2 2s^2 2p^6 3s^2 3p^1$	(1)	
		Ti $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$ or		
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ² penalise any error	(1)	[2]
	(b)	(i) pass chlorine gas over heated aluminium	(1) (1)	

(ii) aluminium glows	(1)
white/yellow solid formed	(1)

chlorine colour disappears/fades (1) (any 2)

(iii)

correct numbers of electrons, i.e.

3 • per A <i>l</i> atom and 7x per C <i>l</i> atom			
i.e. 6 • and 42 \mathbf{x} in total	(1)		
dative bond Cl to Al clearly shown by x_x^x	(1)	[6]	

(c) chlorine is a strong/powerful oxidising agent (1) [1]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

			[Total: 1	4 max]
	mei wea	ition of weak intermolecular forces or k van der Waals's forces between molecules	(1)	[2]
(e)	(e) covalent/not ionic simple molecular or		(1)	
	(iv)	Ti + $2Cl_2 \rightarrow TiCl_4$ Allow ecf on answers to (iii).	(1)	[4]
	(iii)	0.015: 0.06 = 1:4 empirical formula of A is TiC l_4 Allow ecf on answers to (i) and/or (ii).	(1)	
	(ii)	$n(Cl) = \frac{(2.85 - 0.72)}{35.5} = 0.06$	(1)	
(d)	(i)	$n(Ti) = \frac{0.72}{47.9} = 0.015$	(1)	

(asame proton no./atomic no./no. of protons(1)different mass no./nucleon no./no. of neutrons(1)

(b)

	number of			
isotope	р	neutrons	electrons	
⁵⁶ Fe	26			
⁵⁹ Co	27			
	(1)	(1)	(1)	

give one mark for allow (1) if no col	r each correct column umn is correct but one row is correct		[3]
(c) weighted mean/a of an <u>atom</u> (not e compared with ¹² one atom of ¹² C I [relative to ¹ / ₁₂ th th	verage mass lement) C has a mass of exactly 12 ne mass of a ¹² C atom would get 2]	(1) (1) (1)	
or			
mass of 1 mol of compared with ¹² 1 mol of ¹² C has a	atoms C a mass of 12 g	(1) (1) (1)	
(ii) A _r = <u>54 x 5.84 + 5</u> 10	<u>56 x 91.68 + 57 x 2.17</u> 0	(1)	
= <u>5573.13</u> = 55 100	5.7 to 3 sf	(1)	
allow 55.9 if A _r is	calculated using 99.69 instead of 100		[5]

[Total: 10]

[2]

5