Atomic Structure

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atomic Structure
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Question			Mark	Total		
1 (a) sub-atomic particle relative ma			relative mass	relative charge		
		neutron		0	[1]	
		electron	1/1836	_	[1]	
		proton		+	[1]	[3]
	(b) (i)	RAM = mean/average relative to 1/12 atom of ¹² C is	[1] n [1]			
		isotope = atoms with number wi neutrons/	roton [1]	[3]		
	(ii)	$(0.89 \times 74) + (9.37 \times 76)$	<u>82)</u> [1]			
		= 79.04 (2 d.p.) AND Se				[2]
	(c) (i)	Te C1				
		$\frac{47.4}{128}$ $\frac{52.6}{35.5}$			[1]	
		$\begin{array}{cc} 0.370 & 1.48 \\ 0.370 & 0.370 \end{array}$				
		1 4 so	EF = TeC14		[1]	
		Er	npirical Formula Mass	= 270 so MF = Te0	C4 [1]	[3]
	(c) (ii)	Covalent AND simple/molecular			[1]	
		low melting point/reaction with water				[2]
	(iii)	$TeCl_4 + 3H_2O \rightarrow H_2TeO_3 + 4HCl$ OR $TeCl_4 + 2H_2O \rightarrow TeO_2 + 4HCl$			[1]	[1]
	(d) (i)	Yellow/orange flame White fumes/solid Yellow/green gas disappears				[max 2]

Question	Mark Scheme	Mark	Total
(ii)	NaCl giant/lattice AND ionic SiCl ₄ simple/molecular AND covalent	[1] [1]	
	For NaC l large difference in electronegativity (of sodium/Na and chlorine/ Cl/Cl_2) (indicates electron transfer/ions)	[1]	
	For SiC14 smaller difference (indicates sharing/covalency) with (weak) van der Waals'/IM forces (between molecules) ora	[1]	[4]
		ניז	[20]

Question	Scheme					Total
2 (a)	name of particle	relative mass	relative charge			
	proton		+		[1]	
	electron	1/1836	-		[1]	
	neutron		0		[1]	[3]
(b) (i)	Mass of an atom(s)				[1]	
	relative to 1/12 th (the mas OR relative to carbon-12 which	, ,	oon-12		[1]	[2]
(ii)	% of third isotope = 10				[1]	
	$\frac{(24 \times 79) + (26 \times 11.0) + 10}{100}$	$\frac{x}{2} = 24.3$			[1]	
	10x = 248					
	x = 24.8 (3s.f.)				[1]	[3]
(c) (i)	anode $l^- \rightarrow Cl_2 + 2e^-$ cathode $l^+ + 2e^- \rightarrow Mg$			[1] [1]	[2]	
(ii)	Mg O H 31.65 20.84 1.31 16	C <i>l</i> 46.2 35.5			[1]	
	1.30 1.30					
	MgOHC1				[1]	[2]
(d) (i)	Na ₂ O basic/alkaline; A <i>l</i> ₂ O Na ₂ O (giant) ionic AND S				[1] [1]	[2]
(ii)	$Na_2O + 2HCl \rightarrow 2NaCl +$	H ₂ O			[1]	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 +$	3H ₂ O			[1]	
	Al ₂ O ₃ + 2NaOH + 7H ₂ O Al ₂ O ₃ + 2NaOH + 3H ₂ O) ₂ OR		[1]	
	$Al_2O_3 + 2NaOH \rightarrow 2Na$	A1O ₂ + H ₂ O OR	O.D.			
	$Al_2O_3 + 2OH^- + 7H_2O$ $Al_2O_3 + 2OH^- + 3H_2O$	$\rightarrow 2[Al(OH)_4]$ OR	UK			
	$Al_2O_3 + 2OH^- \rightarrow 2AlO_2$	+ H ₂ O				
	$SO_3 + NaOH \rightarrow NaHSO_4$ $SO_3 + 2NaOH \rightarrow Na_2SO_4$				F43	F 45
	2	-			[1]	[4]

Qı	Question		Scheme	Mark	Total
3	(a)		(1s ²)2s ² 2p ⁶	[1]	[1]
	(b)	(i)	The amount of energy required/energy change when one electron is removed	[1]	
			from each atom in one mol of gaseous atoms	[1] [1]	[3]
		(ii)	Greater nuclear charge/number of protons Same shielding/number of shells/energy level	[1] [1]	[2]
	(c)	(i)	mean/average mass of the isotopes/an atom(s) relative to 1/12 of the mass of an atom of ¹² C/on a scale where an atom of ¹² C is (exactly) 12	[1] [1]	[2]
		(ii)	$20.2 = \frac{(20 \times 90.48) + (21 \times 0.27) + (9.25y)}{100}$	[1]	
			$\frac{2020 - 1815.27}{9.25} = 22.133$		
			y = 22	[1]	[2]
	(d)	(i)	$pV = \frac{mRT}{M_r}$		
			$M_r = \frac{mRT}{pV} = \frac{0.275 \times 8.31 \times 298}{100 \times 10^3 \times 200 \times 10^{-6}}$	[1]	
			$M_r = 34.05/34.1$	[1]	[2]
		(ii)	(Let % Ne = x so % Ar = 100-x)		
			$\frac{20.2x + 39.9(100 - x)}{400} = 34.05$		
			100 % Ne = 29.7	[1]	[1]
1	(е	(i)	Van der Waal's/London/dispersion Uneven electron distribution/temporary dipole Induced dipole-dipole attraction	[1] [1] [1]	[3]
		(ii)	more electrons more polarisable/greater attraction/stronger IMFs	[1] [1]	[2]
					[18]