# Measurement Techniques Mark Scheme 3 

| Level | International A Level |
| :--- | :--- |
| Subject | Physics |
| Exam Board | CIE |
| Topic | Measurement Techniques |
| Sub Topic |  |
| Paper Type | Theory |
| Booklet | Mark Scheme 3 |


| Time Allowed: | 52 minutes |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Score: | /43 |  |  |  |  |  |
| Percentage: | $/ 100$ |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | A | C | D | E | U |
| A* |  |  |  | $62.5 \%$ | $57.5 \%$ | $45 \%$ |
| $>85 \%$ | $77.5 \%$ | $70 \%$ |  |  |  |  |

1 (a (i) amplitude scale reading $2.2(\mathrm{~cm})$
amplitude $=2.2 \times 2.5=5.5 \mathrm{mV}$
(ii) time period scale reading $=3.8(\mathrm{~cm})$
time period $=3.8 \times 0.5 \times 10^{-3}=0.0019$ (s)
frequency $f=1 / 0.0019=530(526) \mathrm{Hz}$
(iii) uncertainty in reading $= \pm 0.2$ in $3.8(\mathrm{~cm})$ or $5.3 \%$ or 0.2 in $7.6(\mathrm{~cm})$ or $2.6 \%$ [allow other variations of the distance on the $x$-axis]
actual uncertainty $=5.3 \%$ of $526=27.7$ or 28 Hz
or $2.6 \%$ of $526=13$ or 14
(b) frequency $=530 \pm 30 \mathrm{~Hz}$ or $530 \pm 10 \mathrm{~Hz}$

2
(a $\quad d=v \times t$
$t=0.2 \times 4 \quad$ (allow $t=0.2 \times 2$ ) C1
$d=3 \times 10^{8} \times 0.8 \times 10^{-6} \quad$ OR $\quad 3 \times 10^{8} \times 0.4 \times 10^{-6}$
$d=240 \mathrm{~m}$ hence distance from source to reflector $=120 \mathrm{~m}$
(b) speed of sound 300 cf speed of light $3 \times 10^{8}$

OR time $=240 / 300(=0.8)$
OR time $=120 / 300(=0.4)$
sound slower by factor of $10^{6}$ OR time for one division $0.8 / 4$ OR time for one division 0.4 / 2 time base setting $0.2 \mathrm{~s} \mathrm{~cm}^{-1} \quad$ [unit required]

C1

C1

C1 C1 A1

3
(a) either $P \propto V^{2}$ or $P=V^{2} / R$ reduction $=\left(230^{2}-220^{2}\right) / 230^{2}$

$$
\text { = } 8.5 \text { \% }
$$

A1
[2]

(ii) $0.3(0) \mathrm{A}$ A1
(c) (i) correct plots to within $\pm 1 \mathrm{~mm}$ B1
(ii) reasonable line/curve through points giving current as 0.12 A
allow $\pm 0.005 A$ ) B1
(iii) $V=I R$
$V=0.12 \times 5.0$
$=0.6(0) \mathrm{V}$
A1
(d) circuit acts as a potential divider/current divides/current in AC not the same as current in BC B1 resistance between $A$ and $C$ not equal to resistance between $C$ and $B \ldots \ldots$ B1 or current in wire $A C \times R$ is not equal to current in wire $B C \times R$ B1 any 2 statements

4 (a) uses a tangent (anywhere), not a single point
C1
draws tangent at correct position
acceleration $=1.7 \pm 0.1$
B1
(outside $1.6 \rightarrow 1.8$ but within $1.5 \rightarrow 1.9$, allow 1 mark)
(b) (i) because slope (of tangent of graph) is decreasing acceleration is decreasing
(ii) e.g. air resistance increases (with speed)
(angle of) slope of ramp decreases
(c) (i) scatter of points about line
(ii) intercept / line does not go through origin

5 (a work done in moving unit positive charge M1 from infinity (to the point) A1
(b) (i) inside the sphere, the potential would be constant
(ii) for point charge, $V x$ is constant B1
co-ordinates clear and determines two values of $V x$ at least 4 cm apart conclusion made clear
(c) $q=4 \pi \varepsilon_{0} V x$
$q=4 \pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}$
M1

$$
=2.0 \times 10^{-10} \mathrm{C}
$$

