Measurement Techniques Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Measurement Techniques
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	52 minutes
Score:	/43
Percentage:	/100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1	(a	(i)	amplitude scale reading 2.2 (cm) amplitude = 2.2 × 2.5 = 5.5 mV		[2]
		(ii)	time period scale reading = 3.8 (cm) time period = $3.8 \times 0.5 \times 10^{-3} = 0.0019$ (s)		
			frequency $f = 1 / 0.0019 = 530 (526)$ Hz	A1	[3]
		(iii)	uncertainty in reading = ± 0.2 in 3.8 (cm) or 5.3% or 0.2 in 7.6 (cm) or 2.6% [allow other variations of the distance on the <i>x</i> -axis]		
			actual uncertainty = 5.3% of 526 = 27.7 or 28 Hz or 2.6% of 526 = 13 or 14	A1	[2]
	(b)	frec	quency = 530 ± 30 Hz or 530 ± 10 Hz		[1]

2	(a	$d = v \times t$ $t = 0.2 \times 4 (allow \ t = 0.2 \times 2)$ $d = 3 \times 10^8 \times 0.8 \times 10^{-6} OR$ d = 240 m hence distance from source		C1 C1 C1 A1	[4]
	(b)	speed of sound 300 cf speed of ligh	ht 3×10^8 OR time = 240 / 300 (= 0.8) OR time = 120 / 300 (= 0.4)	C1	
		,	OR time for one division 0.8 / 4		
		4	DR time for one division 0.4 / 2 nit required]	C1 A1	[3]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

3	(a)		$er P \propto V^2 \text{ or } P = V^2/R$ uction = $(230^2 - 220^2)/230^2$ = 8.5 %	A1	[2]
	(b)	(i)	zero	A1	[1]
		(ii)	0.3(0)A	A1	[1]
	(c)	(i)	correct plots to within ± 1 mm	B1	[1]
		(ii)	<u>reasonable line/curve</u> through points giving current as 0.12A allow ± 0.005A)	B1	[1]
		(iii)	V = IR $V = 0.12 \times 5.0$ = 0.6(0)V	A1	[2]
	(d)	cur res or c	uit acts as a potential divider/current divides/current in AC not the same as rent in BC istance between A and C not equal to resistance between C and B current in wire AC × R is not equal to current in wire BC × R 2 statements	B1 B1 B1	[2]

4	(a)		uses a tangent (anywhere), not a single point draws tangent at correct position acceleration = 1.7 ± 0.1 (<i>outside</i> $1.6 \rightarrow 1.8$ but within $1.5 \rightarrow 1.9$, allow 1 mark)	C1 B1 A2	[4]
	(b)	(i) (ii)	because slope (of tangent of graph) is decreasing acceleration is decreasing e.g. air resistance increases (with speed)	M1 A1	[2]
			(angle of) slope of ramp decreases	B1	[1]
	(c)	(i) (ii)	scatter of points about <u>line</u> intercept / line does not go through origin	B1 B1	[1] [1]

5 (a work done in moving unit positive charge from infinity (to the point)				M1 A1	[2]
	(b)	(i)	inside the sphere, the potential would be constant	B1	[1]
		(ii)	for point charge, <i>Vx</i> is constant co-ordinates clear and determines two values of <i>Vx</i> at least 4 cm apart conclusion made clear	B1 M1 A1	[3]
	(c)	q =	= $4\pi \varepsilon_0 V x$ = $4\pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}$ = $2.0 \times 10^{-10} \text{ C}$	M1 A1	[2]