The normal distribution Question Paper 2

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	The normal distribution
Sub Topic	
Booklet	Question Paper 2

Time Allowed:	52 minutes
Score:	$/ 43$
Percentage:	$/ 100$

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

1 (a) The random variable X is normally distributed with mean 82 and standard deviation 7.4. Find the value of q such that $\mathrm{P}(82-q<X<82+q)=0.44$.
(b) The random variable Y is normally distributed with mean μ and standard deviation σ. It is given that $5 \mu=2 \sigma^{2}$ and that $\mathrm{P}\left(Y<\frac{1}{2} \mu\right)=0.281$. Find the values of μ and σ.

2 Lengths of rolls of parcel tape have a normal distribution with mean 75 m , and 15% of the rolls have lengths less than 73 m .
(i) Find the standard deviation of the lengths.

Alison buys 8 rolls of parcel tape.
(ii) Find the probability that fewer than 3 of these rolls have lengths more than 77 m .

3 The random variable X is the daily profit, in thousands of dollars, made by a company. X is normally distributed with mean 6.4 and standard deviation 5.2.
(i) Find the probability that, on a randomly chosen day, the company makes a profit between $\$ 10000$ and $\$ 12000$.
(ii) Find the probability that the company makes a loss on exactly 1 of the next 4 consecutive days.

4 A fair tetrahedral die has four triangular faces, numbered 1,2,3 and 4. The score when this die is thrown is the number on the face that the die lands on. This die is thrown three times. The random variable X is the sum of the three scores.
(i) Show that $\mathrm{P}(X=9)=\frac{10}{64}$.
(ii) Copy and complete the probability distribution table for X.

x	3	4	5	6	7	8	9	10	11	12
$\mathrm{P}(X=x)$	$\frac{1}{64}$	$\frac{3}{64}$			$\frac{12}{64}$					

(iii) Event R is 'the sum of the three scores is 9 '. Event S is 'the product of the three scores is 16 '. Determine whether events R and S are independent, showing your working.

5 The random variable X is such that $X \sim \mathrm{~N}(82,126)$.
(i) A value of X is chosen at random and rounded to the nearest whole number. Find the probability that this whole number is 84 .
(ii) Five independent observations of X are taken. Find the probability that at most one of them is greater than 87 .
(iii) Find the value of k such that $\mathrm{P}(87<X<k)=0.3$.

