Arenes

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydrocarbons
Sub-Topic	Arenes
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 47 minutes

Score: /39

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1 Chloroacetophenone (compound **D**, below) was formerly the most widely used tear gas, under the codename *CN*. It was used in warfare and in riot control. It can be synthesised from ethylbenzene, **A**, by the following route.

<u></u> СН	$H_2CH_3 \xrightarrow{I} CHC$		H(OH)CH ₃ → 《	\longrightarrow COCH ₃ \longrightarrow	COCH ₂ Cl
	A B			С	D
(a)	Suggest reagents and	conditions for step) l.		
					[1]
(b)	Suggest reagents and isomer of B .	d conditions for co	onverting ethylbei	nzene into compo	und E , an
		CI-O-	CH ₂ CH ₃		
		Е			
					[1]
(c)	Draw the structure of t	he product obtaine	ed by heating ethy	lbenzene with KMr	1O ₄ .
					[1]
(d)	Describe a test (reagon compound F.	ents and observati	ons) that would d	listinguish compou	ind C from
			CH ₂ CH ₃		
		F			
	reagents				
	observation with C				
	observation with F				
					[2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(e)	The efficiency of a tear gas is expressed by its 'intolerable concentration', I.C. The I.C of the tear gas CN has been measured as $0.030\mathrm{gm^{-3}}$ of air. How many moles of chloroacetophenone need to be sprayed into a room of volume $60\mathrm{m^3}$ in order to achieve this concentration?
	[2]
(f)	Residues of CN can be destroyed by hydrolysis with an aqueous alkali.
	$\bigcirc - COCH_2Cl + OH^- \longrightarrow \bigcirc - COCH_2OH + Cl^-$
	D
	Compounds G and H are isomers of compound D .
	\bigcirc $-\text{CH}_2\text{COC}l$ \bigcirc $-\text{COCH}_3$
	G H
	(i) Arrange the three isomers D , G and H in order of increasing ease of hydrolysis.
	(ii) Explain the reasoning behind your choice.
	[3
	[Total : 10

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2			e of the lack of reactivity of the nitrogen molecule, extreme conditions need to be used esise ammonia from nitrogen in the Haber process.
	(a)	Sug	gest an explanation for the lack of reactivity of the nitrogen molecule, N_2 .
			[1]
	(b)		der conditions of high temperature, nitrogen and oxygen react together to give oxides itrogen.
		(i)	Write an equation for a possible reaction between nitrogen and oxygen.
		(ii)	State two situations, one natural and one as a result of human activities, in which nitrogen and oxygen react together.
		(iii)	What is the main environmental effect of the presence of nitrogen oxides in the atmosphere?
			[4]
	(c)	_	scribe and explain how the basicities of ethylamine and phenylamine compare to that immonia.
		••••	
			[4]

(d) Compound X is a useful intermediate in the synthesis of pharmaceuticals.X can be synthesised from chloromethylbenzene according to the following scheme.

(i) What type of reaction is each of the following?

step 1	 	 	 	 	
step 2	 	 	 	 	

(ii) Suggest reagents and conditions for

(iii) Draw the structures of the intermediates T and W in the boxes above.

[6]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 Both ethene and benzene react with bromine, but the mechanisms and the types of products of the two reactions are different.

$$H_2C = CH_2 + Br_2 - \frac{\text{reaction I}}{\text{no heat, no light, no catalyst needed}} BrCH_2CH_2Br$$

(a) State the type of reaction undergone in each of reactions I and II.

reaction I	
reaction II	
	[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) In each of reactions I and II, the intermediate is a bromine-containing cation. In each

of the following boxes, draw the intermediate and use curly arrows to show how it is converted into the product.

reaction I
intermediate

reaction II
product

reaction II
intermediate

[Total: 7]

[4]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4	Botl	n phenol and phenylamine react similarly with aqueous bromine.
	(a)	State two observations you would make when these reactions take place.
		[2]
	(b)	Describe a simple test-tube reaction you could use to distinguish between phenol and phenylamine.
		[1]
	(c)	The compound 3-aminobenzoic acid can be prepared by the following series of reactions.
CH ₃	3	CO ₂ H
	-	reaction IV reaction V reaction V NO ₂
		Suggest suitable reagents and conditions for
		reaction IV,
		reaction V,
		reaction VI [4]

[Total: 7]