Arenes # **Question Paper 4** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Hydrocarbons | | Sub-Topic | Arenes | | Paper Type | Theory | | Booklet | Question Paper 4 | Time Allowed: 47 minutes Score: /39 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | Е | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | ### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u> 1 Chloroacetophenone (compound **D**, below) was formerly the most widely used tear gas, under the codename *CN*. It was used in warfare and in riot control. It can be synthesised from ethylbenzene, **A**, by the following route. | <u></u> СН | $H_2CH_3 \xrightarrow{I} CHC$ | | H(OH)CH ₃ → 《 | \longrightarrow COCH ₃ \longrightarrow | COCH ₂ Cl | |------------|--|---------------------|---------------------------------|---|----------------------| | | A B | | | С | D | | (a) | Suggest reagents and | conditions for step |) l. | | | | | | | | | [1] | | (b) | Suggest reagents and isomer of B . | d conditions for co | onverting ethylbei | nzene into compo | und E , an | | | | CI-O- | CH ₂ CH ₃ | | | | | | Е | | | | | | | | | | [1] | | (c) | Draw the structure of t | he product obtaine | ed by heating ethy | lbenzene with KMr | 1O ₄ . | | | | | | | [1] | | (d) | Describe a test (reagon compound F. | ents and observati | ons) that would d | listinguish compou | ind C from | | | | | CH ₂ CH ₃ | | | | | | F | | | | | | reagents | | | | | | | | | | | | | | observation with C | | | | | | | | | | | | | | observation with F | | | | | | | | | | | | | | | | | | [2] | # **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (e) | The efficiency of a tear gas is expressed by its 'intolerable concentration', I.C. The I.C of the tear gas CN has been measured as $0.030\mathrm{gm^{-3}}$ of air. How many moles of chloroacetophenone need to be sprayed into a room of volume $60\mathrm{m^3}$ in order to achieve this concentration? | |-----|---| | | | | | | | | [2] | | (f) | Residues of CN can be destroyed by hydrolysis with an aqueous alkali. | | | $\bigcirc - COCH_2Cl + OH^- \longrightarrow \bigcirc - COCH_2OH + Cl^-$ | | | D | | | Compounds G and H are isomers of compound D . | | | \bigcirc $-\text{CH}_2\text{COC}l$ \bigcirc $-\text{COCH}_3$ | | | G H | | | (i) Arrange the three isomers D , G and H in order of increasing ease of hydrolysis. | | | (ii) Explain the reasoning behind your choice. | | | | | | | | | [3 | | | [Total : 10 | # **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | 2 | | | e of the lack of reactivity of the nitrogen molecule, extreme conditions need to be used esise ammonia from nitrogen in the Haber process. | |---|-----|-------|--| | | (a) | Sug | gest an explanation for the lack of reactivity of the nitrogen molecule, N_2 . | | | | | | | | | | [1] | | | (b) | | der conditions of high temperature, nitrogen and oxygen react together to give oxides itrogen. | | | | (i) | Write an equation for a possible reaction between nitrogen and oxygen. | | | | (ii) | State two situations, one natural and one as a result of human activities, in which nitrogen and oxygen react together. | | | | (iii) | What is the main environmental effect of the presence of nitrogen oxides in the atmosphere? | | | | | [4] | | | (c) | _ | scribe and explain how the basicities of ethylamine and phenylamine compare to that immonia. | | | | •••• | [4] | (d) Compound X is a useful intermediate in the synthesis of pharmaceuticals.X can be synthesised from chloromethylbenzene according to the following scheme. (i) What type of reaction is each of the following? | step 1 |
 |
 |
 |
 | | |--------|------|------|------|------|--| | step 2 |
 |
 |
 |
 | | (ii) Suggest reagents and conditions for (iii) Draw the structures of the intermediates T and W in the boxes above. [6] ### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ **3** Both ethene and benzene react with bromine, but the mechanisms and the types of products of the two reactions are different. $$H_2C = CH_2 + Br_2 - \frac{\text{reaction I}}{\text{no heat, no light, no catalyst needed}} BrCH_2CH_2Br$$ (a) State the type of reaction undergone in each of reactions I and II. | reaction I | | |-------------|-----| | reaction II | | | | [2] | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ (b) In each of reactions I and II, the intermediate is a bromine-containing cation. In each of the following boxes, draw the intermediate and use curly arrows to show how it is converted into the product. reaction I intermediate reaction II product reaction II intermediate [Total: 7] [4] ## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | 4 | Botl | n phenol and phenylamine react similarly with aqueous bromine. | |-----------------|------|---| | | (a) | State two observations you would make when these reactions take place. | | | | | | | | | | | | [2] | | | (b) | Describe a simple test-tube reaction you could use to distinguish between phenol and phenylamine. | | | | | | | | [1] | | | (c) | The compound 3-aminobenzoic acid can be prepared by the following series of reactions. | | CH ₃ | 3 | CO ₂ H | | | - | reaction IV reaction V reaction V NO ₂ | | | | Suggest suitable reagents and conditions for | | | | reaction IV, | | | | reaction V, | | | | reaction VI [4] | [Total: 7]